

Sea Grant College Program
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Project No. 2008-ESRDC-01-LEV

Also available as Computer Science and Artificial Intelligence Laboratory Technical Report
(MIT-CSAIL-TR-2011-036), July 28, 2011

MOOS-IVP AUTONOMY TOOLS USERS MANUAL
RELEASE 4.2.1

M. R. Benjamin

MITSG 11-28

Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2011-036 July 28, 2011

MOOS-IvP Autonomy Tools Users Manual
Release 4.2.1
Michael R. Benjamin

MOOS-IvP Autonomy Tools Users Manual

Release 4.2.1

Michael R. Benjamin
Department Mechanical Engineering

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology, Cambridge MA

July 26, 2011 - Release 4.2.1

Abstract
This document describes 19 MOOS-IvP autonomy tools. uHelmScope provides a run-time

scoping window into the state of an active IvP Helm executing its mission. pMarineViewer
is a geo-based GUI tool for rendering marine vehicles and geometric data in their operational
area. uXMS is a terminal based tool for scoping on a MOOSDB process. uTermCommand is a
terminal based tool for poking a MOOSDB with a set of MOOS file pre-defined variable-value
pairs selectable with aliases from the command-line. pEchoVar provides a way of echoing a post
to one MOOS variable with a new post having the same value to a different variable. uPro-
cessWatch monitors the presence or absence of a set of MOOS processes and summarizes the
collective status in a single MOOS variable. uPokeDB provides a way of poking the MOOSDB
from the command line with one or more variable-value pairs without any pre-existing configu-
ration of a MOOS file. uTimerScript will execute a pre-defined timed pausable script of poking
variable-value pairs to a MOOSDB. pNodeReporter summarizes a platforms critical information
into a single node report string for sharing beyond the vehicle. pBasicContactMgr provides
a basic contact management service with the ability to generate range-dependent configurable
alerts. uSimMarine provides a simple marine vehicle simulator. uSimBeaconRange and uSim-
ContactRange provide further simulation for range-only sensors. The Alog Toolbox is a set of
offline tools for analyzing and manipulating log files in the .alog format.

This work is the product of a multi-year collaboration between the Department of Mechanical
Engineering and the Computer Science and Artificial Intelligence Laboratory (CSAIL) at the Mas-
sachusetts Institute of Technology in Cambridge Massachusetts, and the Oxford University Mobile
Robotics Group.

Points of contact for collaborators:

Dr. Michael R. Benjamin
Department of Mechanical Engineering
Computer Science and Artificial Intelligence Laboratory
Massachusetts Intitute of Technology
mikerb@csail.mit.edu

Prof. John J. Leonard
Department of Mechanical Engineering
Computer Science and Artificial Intelligence Laboratory
Massachusetts Intitute of Technology
jleonard@csail.mit.edu

Prof. Henrik Schmidt
Department of Mechanical Engineering
Massachusetts Intitute of Technology
henrik@mit.edu

Dr. Paul Newman
Department of Engineering Science
University of Oxford
pnewman@robots.ox.ac.uk

Other collaborators have contributed greatly to the development and testing of software and ideas within,
notably - Joseph Curcio, Toby Schneider, Stephanie Kemna, Arjan Vermeij, Don Eickstedt, Andrew Pa-
trikilakis, Arjuna Balasuriya, David Battle, Christian Convey, Chris Gagner, Andrew Shafer, and Kevin
Cockrell.

Sponsorship, and public release information:

This work is sponsored by Dr. Behzad Kamgar-Parsi and Dr. Don Wagner of the Office of Naval Research
(ONR), Code 311. Further support for testing and coursework development sponsored by Battelle, Dr.
Robert Carnes.

2

Contents

1 Overview 9
1.1 Purpose and Scope of this Document . 9
1.2 Brief Background of MOOS-IvP . 9
1.3 Sponsors of MOOS-IvP . 10
1.4 The Software . 10

1.4.1 Building and Running the Software . 10
1.4.2 Operating Systems Supported by MOOS and IvP 11

1.5 Where to Get Further Information . 12
1.5.1 Websites and Email Lists . 12
1.5.2 Documentation . 12

1.6 What’s New in Release 4.2.1 and 4.2 . 13

2 The uHelmScope Utility: Scoping on the IvP Helm 16
2.1 Brief Overview . 16
2.2 Console Output of uHelmScope . 16

2.2.1 The General Helm Overview Section of the uHelmScope Output 17
2.2.2 The MOOSDB-Scope Section of the uHelmScope Output 18
2.2.3 The Behavior-Posts Section of the uHelmScope Output 18

2.3 Stepping Forward and Backward Through Saved Scope History 19
2.4 Console Key Mapping and Command Line Usage Summaries 19
2.5 IvPHelm MOOS Variable Output Supporting uHelmScope Reports 20
2.6 Configuration Parameters for uHelmScope . 21
2.7 Publications and Subscriptions for uHelmScope . 22

3 The pMarineViewer Utility: A GUI for Mission Control 23
3.1 Brief Overview . 23
3.2 Description of the pMarineViewer GUI Interface . 24
3.3 Pull-Down Menu Options . 25

3.3.1 The “BackView” Pull-Down Menu . 25
3.3.2 The “GeoAttributes” Pull-Down Menu . 27
3.3.3 The “Vehicles” Pull-Down Menu . 28
3.3.4 The “MOOS-Scope” Pull-Down Menu . 29
3.3.5 The Optional ”Action” Pull-Down Menu . 29
3.3.6 The Optional “Mouse-Context” Pull-Down Menu 30
3.3.7 The Optional “Reference-Point” Pull-Down Menu 32

3.4 Displayable Vehicle Shapes, Markers, Drop Points, and other Geometric Objects . . 33
3.4.1 Displayable Vehicle Shapes . 33
3.4.2 Displayable Marker Shapes . 34
3.4.3 Displayable Drop Points . 35
3.4.4 Displayable Geometric Objects . 36

3.5 Support for Command-and-Control Usage . 37
3.5.1 Poking the MOOSDB with Geo Positions . 37
3.5.2 Configuring GUI Buttons for Command and Control 37

3

3.6 Configuration Parameters for pMarineViewer . 38
3.7 More about Geo Display Background Images . 43
3.8 Publications and Subscriptions for pMarineViewer 44

3.8.1 Variables published by the pMarineViewer application 44
3.8.2 Variables subscribed for by pMarineViewer application 45

4 The uXMS Utility: Scoping the MOOSDB from the Console 46
4.1 Brief Overview . 46
4.2 The uXMS Refresh Modes . 46

4.2.1 The Streaming Refresh Mode . 47
4.2.2 The Events Refresh Mode . 47
4.2.3 The Paused Refresh Mode . 47

4.3 The uXMS Content Modes . 47
4.3.1 The Scoping Content Mode . 48
4.3.2 The History Content Mode . 48

4.4 Configuration File Parameters for uXMS . 49
4.5 Command Line Usage of uXMS . 51
4.6 Console Interaction with uXMS at Run Time . 53
4.7 Running uXMS Locally or Remotely . 55
4.8 Connecting multiple uXMS processes to a single MOOSDB 55
4.9 Publications and Subscriptions for uXMS . 56

5 uTermCommand: Poking the MOOSDB with Pre-Set Values 57
5.1 Brief Overview . 57
5.2 Configuration Parameters for uTermCommand . 57
5.3 Console Interaction with uTermCommand at Run Time 58
5.4 More on uTermCommand for In-Field Command and Control 59
5.5 Connecting uTermCommand to the MOOSDB Under an Alias 61
5.6 Publications and Subscriptions for uTermCommand 61

5.6.1 Variables Published by the uTermCommand Application 61
5.6.2 Variables Subscribed for by the uTermCommand Application 61

6 pEchoVar: Re-publishing Variables Under a Different Name 62
6.1 Overview of the pEchoVar Interface and Configuration Options 62

6.1.1 Brief Summary of the pEchoVar Configuration Parameters 62
6.1.2 MOOS Variables Posted by pEchoVar . 62
6.1.3 MOOS Variables Subscribed for by pEchoVar 62

6.2 Basic Usage of the pEchoVar Utility . 62
6.2.1 Configuring Echo Mapping Events . 63
6.2.2 Configuring Flip Mapping Events . 63
6.2.3 Applying Conditions to the Echo and Flip Operation 64

6.3 Configuring for Vehicle Simulation with pEchoVar 65

4

7 uProcessWatch: Monitoring Process Connections to the MOOSDB 66
7.1 Brief Overview . 66
7.2 Configuration Parameters for uProcessWatch . 66
7.3 Publications and Subscriptions for uProcessWatch 67

8 uPokeDB: Poking the MOOSDB from the Command Line 68
8.1 Brief Overview . 68
8.2 Command-line Arguments of uPokeDB . 68
8.3 MOOS Poke Macro Expansion . 69
8.4 Command Line Specification of the MOOSDB to be Poked 69
8.5 Session Output from uPokeDB . 69
8.6 Publications and Subscriptions for uPokeDB . 70

9 The uTimerScript Utility: Scripting Events to the MOOSDB 71
9.1 Overview of the uTimerScript Interface and Configuration Options 71

9.1.1 Brief Summary of the uTimerScript Configuration Parameters 71
9.1.2 MOOS Variables Posted by uTimerScript . 72
9.1.3 MOOS Variables Subscribed for by uTimerScript 72
9.1.4 Command Line Usage of uTimerScript . 72
9.1.5 An Example MOOS Configuration Block . 73

9.2 Basic Usage of the uTimerScript Utility . 74
9.2.1 Configuring the Event List . 74
9.2.2 Resetting the Script . 75

9.3 Script Flow Control . 76
9.3.1 Pausing the Timer Script . 76
9.3.2 Conditional Pausing of the Timer Script and Atomic Scripts 76
9.3.3 Fast-Forwarding the Timer Script . 77

9.4 Macro Usage in Event Postings . 77
9.4.1 Built-In Macros Available . 77
9.4.2 User Configured Macros with Random Variables 78
9.4.3 Support for Simple Arithmetic Expressions with Macros 78

9.5 Random Time Warps and Initial Delays . 78
9.5.1 Random Time Warping . 79
9.5.2 Random Initial Start Delays . 79

9.6 More on uTimerScript Output to the MOOSDB and Console 79
9.6.1 Status Messages Posted to the MOOSDB by uTimerScript 79
9.6.2 Console Output Generated by uTimerScript 80

9.7 Examples . 81
9.7.1 A Script Used as Proxy for an On-Board GPS Unit 81
9.7.2 A Script as a Proxy for Simulating Random Wind Gusts 83

10 The pNodeReporter Utility: Summarizing a Node’s Status 85
10.1 Overview of the pNodeReporter Interface and Configuration Options 86

10.1.1 Configuration Parameters for pNodeReporter 86
10.1.2 MOOS Variables Posted by pNodeReporter 86

5

10.1.3 MOOS Variables Subscribed for by pNodeReporter 86
10.1.4 Command Line Usage of pNodeReporter . 87
10.1.5 An Example MOOS Configuration Block . 87

10.2 Basic Usage of the pNodeReporter Utility . 88
10.2.1 Overview Node Report Components . 88
10.2.2 Helm Characteristics . 89
10.2.3 Platform Characteristics . 89
10.2.4 Dealing with Local versus Global Coordinates 90
10.2.5 Processing Alternate Navigation Solutions . 90

10.3 The Optional Blackout Interval Option . 91
10.4 The Optional Platform Report Feature . 92
10.5 An Example Platform Report Configuration Block for pNodeReporter 93

11 The pBasicContactMgr Utility: Managing Platform Contacts 95
11.1 Overview of the pBasicContactMgr Interface and Configuration Options 95

11.1.1 Brief Summary of the pBasicContactMgr Configuration Parameters 96
11.1.2 MOOS Variables Posted by pBasicContactMgr 96
11.1.3 MOOS Variables Subscribed for by pBasicContactMgr 96
11.1.4 Command Line Usage of pBasicContactMgr 97
11.1.5 An Example MOOS Configuration Block . 97

11.2 Basic Usage of the pBasicContactMgr Utility . 98
11.2.1 Contact Alert Messages . 98
11.2.2 Contact Alert Triggers . 99
11.2.3 Contact Alert Record Keeping . 100
11.2.4 Contact Resolution . 100

11.3 Usage of the pBasicContactMgr with the IvP Helm 100
11.4 Console Output Generated by pBasicContactMgr . 101

12 The uSimMarine Utility: Basic Vehicle Simulation 103
12.1 Overview of the uSimMarine Interface and Configuration Options 103

12.1.1 Brief Summary of the uSimMarine Configuration Parameters 103
12.1.2 MOOS Variables Posted by uSimMarine . 104
12.1.3 MOOS Variables Subscribed for by uSimMarine 105
12.1.4 Command Line Usage of uSimMarine . 105
12.1.5 An Example MOOS Configuration Block . 105

12.2 Setting the Initial Vehicle Position, Pose and Trajectory 106
12.3 Propagating the Vehicle Speed, Heading, Position and Depth 107
12.4 Simulation of External Forces . 112
12.5 The ThrustMap Data Structure . 114

13 The uSimBeaconRange Utility: Simulating Vehicle to Beacon Ranges 117
13.1 Overview of the uSimBeaconRange Interface and Configuration Options 118

13.1.1 Configuration Parameters of uSimBeaconRange 118
13.1.2 MOOS Variables Published by uSimBeaconRange 119
13.1.3 MOOS Variables Subscribed for by uSimBeaconRange 119

6

13.1.4 Command Line Usage of uSimBeaconRange 120
13.1.5 An Example MOOS Configuration Block . 120

13.2 Using and Configuring the uSimBeaconRange Utility 121
13.2.1 Configuring the Beacon Locations and Properties 122
13.2.2 Unsolicited Beacon Range Reports . 123
13.2.3 Solicited Beacon Range Reports . 124
13.2.4 Limiting the Frequency of Vehicle Range Requests 124
13.2.5 Producing Range Measurements with Noise 125
13.2.6 Console Output Generated by uSimBeaconRange 126

13.3 Interaction between uSimBeaconRange and pMarineViewer 128
13.4 The Indigo Example Mission Using uSimBeaconRange 130

13.4.1 Generating Range Report Data for Matlab 131

14 The uSimContactRange Utility: Detecting Contact Ranges 132
14.1 Overview of the uSimContactRange Interface and Configuration Options 133

14.1.1 Configuration Parameters of uSimContactRange 133
14.1.2 MOOS Variables Published by uSimContactRange 134
14.1.3 MOOS Variables Subscribed for by uSimContactRange 134
14.1.4 Command Line Usage of uSimContactRange 134

14.2 Configuring the uSimContactRange Parameters . 135
14.3 Limiting the Frequency of Vehicle Range Requests 136
14.4 Producing Range Measurements with Noise . 136
14.5 An Example MOOS Configuration Block . 137

14.5.1 Console Output Generated by uSimContactRange 137
14.6 Interaction between uSimContactRange and pMarineViewer 140
14.7 The Hugo Example Mission Using uSimContactRange 140

15 The uSimCurrent Utility: Simulating Water Currents 144
15.1 Overview of the uSimCurrent Interface and Configuration Options 144

15.1.1 Configuration Parameters for uSimCurrent 144
15.1.2 MOOS Variables Posted by uSimCurrent . 145
15.1.3 MOOS Variables Subscribed for by uSimCurrent 145

16 The Alog-Toolbox for Analyzing and Editing Mission Log Files 146
16.1 Brief Overview . 146
16.2 An Example .alog File . 146
16.3 The alogscan Tool . 146

16.3.1 Command Line Usage for the alogscan Tool 146
16.3.2 Example Output from the alogscan Tool . 147

16.4 The alogclip Tool . 149
16.4.1 Command Line Usage for the alogclip Tool 149
16.4.2 Example Output from the alogclip Tool . 150

16.5 The aloggrep Tool . 150
16.5.1 Command Line Usage for the aloggrep Tool 150
16.5.2 Example Output from the aloggrep Tool . 151

7

16.6 The alogrm Tool . 151
16.6.1 Command Line Usage for the alogrm Tool 151
16.6.2 Example Output from the alogrm Tool . 152

16.7 The alogview Tool . 153
16.7.1 Command Line Usage for the alogview Tool 154
16.7.2 Description of Panels in the alogview Window 154
16.7.3 The Op-Area Panel for Rendering Vehicle Trajectories 155
16.7.4 The Helm Scope Panels for View Helm State by Iteration 157
16.7.5 The Data Plot Panel for Logged Data over Time 157
16.7.6 Automatic Replay of the Log file(s) . 158

A Use of Logic Expressions 159

B Colors 161

8

1 Overview

1.1 Purpose and Scope of this Document

The MOOS-IvP autonomy tools described in this document are software applications that are
typically running either as part of an overall autonomy system running on a marine vehicle, as
part of a marine vehicle simulation. or used for post-mission off-line analysis. They are each
MOOS applications, meaning they are running and communicating with a MOOSDB application
as depicted in Figure 1. The AlogToolbox described here contains a number of off-line tools for
analyzing alog files produced by the pLogger application.

Figure 1: Autonomy utility applications: A MOOS community consists of a running MOOSDB application and
a number of applications connected and communicating with each other via publish and subscribe interface. The
pHelmIvP application provides the autonomy decision-making capapability and the other highlighted applications
provide support capabilities for the system.

The focus of this paper is on these tools, and the set of off-line mission analysis tools comprising
the Alog Toolbox. Important topics outside this scope are (a) MOOS middleware programming, (b)
the IvP Helm and autonomy behaviors, and (c) other important MOOS utilities applications not
covered here. The intention of this paper is to provide documenation for these common applications
for current users of the MOOS-IvP software.

1.2 Brief Background of MOOS-IvP

MOOS was written by Paul Newman in 2001 to support operations with autonomous marine
vehicles in the MIT Ocean Engineering and the MIT Sea Grant programs. At the time Newman
was a post-doc working with John Leonard and has since joined the faculty of the Mobile Robotics
Group at Oxford University. MOOS continues to be developed and maintained by Newman at
Oxford and the most current version can be found at his web site. The MOOS software available in
the MOOS-IvP project includes a snapshot of the MOOS code distributed from Oxford. The IvP
Helm was developed in 2004 for autonomous control on unmanned marine surface craft, and later
underwater platforms. It was written by Mike Benjamin as a post-doc working with John Leonard,

9

and as a research scientist for the Naval Undersea Warfare Center in Newport Rhode Island. The
IvP Helm is a single MOOS process that uses multi-objective optimization to implement behavior
coordination.

Acronyms

MOOS stands for ”Mission Oriented Operating Suite” and its original use was for the Bluefin
Odyssey III vehicle owned by MIT. IvP stands for ”Interval Programming” which is a mathematical
programming model for multi-objective optimization. In the IvP model each objective function is a
piecewise linear construct where each piece is an interval in N-Space. The IvP model and algorithms
are included in the IvP Helm software as the method for representing and reconciling the output of
helm behaviors. The term interval programming was inspired by the mathematical programming
models of linear programming (LP) and integer programming (IP). The pseudo-acronym IvP was
chosen simply in this spirit and to avoid acronym clashing.

1.3 Sponsors of MOOS-IvP

Original development of MOOS and IvP were more or less infrastructure by-products of other
sponsored research in (mostly marine) robotics. Those sponsors were primarily The Office of
Naval Research (ONR), as well as the National Oceanic and Atmospheric Administration (NOAA).
MOOS and IvP are currently funded by Code 31 at ONR, Dr. Don Wagner and Dr. Behzad
Kamgar-Parsi. Testing and development of course work at MIT is further supported by Battelle,
Dr. Robert Carnes. MOOS is additionally supported in the U.K. by EPSRC. Early development of
IvP benefited from the support of the In-house Laboratory Independent Research (ILIR) program
at the Naval Undersea Warfare Center in Newport RI. The ILIR program is funded by ONR.

1.4 The Software

The MOOS-IvP autonomy software is available at the following URL:

http://www.moos-ivp.org

Follow the links to Software. Instructions are provided for downloading the software from an SVN
server with anonymous read-only access.

1.4.1 Building and Running the Software

This document is written to Release 4.2.1. After checking out the tree from the SVN server as
prescribed at this link, the top level directory should have the following structure:

moos-ivp/
MOOS@/
MOOS-2374-Apr0611/
README.txt
README-LINUX.txt
README-OS-X.txt
README-WINDOWS.txt
README.txt

10

bin/
build/
build-moos.sh
build-ivp.sh
configure-ivp.sh
ivp/
lib/
scripts/

Note there is a MOOS directory and an IvP sub-directory. The MOOS directory is a symbolic link
to a particular MOOS revision checked out from the Oxford server. In the example above this is
Revision 2374 on the Oxford SVN server. This directory is left completely untouched other than
giving it the local name MOOS-2374-Apr0611. The use of a symbolic link is done to simplify the
process of bringing in a new snapshot from the Oxford server.

The build instructions are maintained in the README files and are probably more up to date
than this document can hope to remain. In short building the software amounts to two steps -
building MOOS and building IvP. Building MOOS is done by executing the build-moos.sh script:

> cd moos-ivp
> ./build-moos.sh

Alternatively one can go directly into the MOOS directory and configure options with ccmake and
build with cmake. The script is included to facilitate configuration of options to suit local use.
Likewise the IvP directory can be built by executing the build-ivp.sh script. The MOOS tree must
be built before building IvP. Once both trees have been built, the user’s shell executable path must
be augmented to include the two directories containing the new executables:

moos-ivp/MOOS/MOOSBin
moos-ivp/bin

At this point the software should be ready to run and a good way to confirm this is to run the
example simulated mission in the missions directory:

> cd moos-ivp/ivp/missions/alpha/
> pAntler alpha.moos

Running the above should bring up a GUI with a simulated vehicle rendered. Clicking the DEPLOY

button should start the vehicle on its mission. If this is not the case, some help and email contact
links can be found at www.moos-ivp.org/support/, or emailing issues@moos-ivp.org.

1.4.2 Operating Systems Supported by MOOS and IvP

The MOOS software distributed by Oxford is well supported on Linux, Windows and Mac OS
X. The software distributed by MIT includes additional MOOS utility applications and the IvP
Helm and related behaviors. These modules are support on Linux and Mac OS X and the software
compiles and runs on Windows but Windows support is limited.

11

1.5 Where to Get Further Information

1.5.1 Websites and Email Lists

There are two web sites - the MOOS web site maintained by Oxford University, and the MOOS-IvP
web site maintained by MIT. At the time of this writing they are at the following URLs:

http://www.robots.ox.ac.uk/~pnewman/TheMOOS/

http://www.moos-ivp.org

What is the difference in content between the two web sites? As discussed previously, MOOS-IvP,
as a set of software, refers to the software maintained and distributed from Oxford plus additional
MOOS applications including the IvP Helm and library of behaviors. The software bundle released
at moos-ivp.org does include the MOOS software from Oxford - usually a particular released version.
For the absolute latest in the core MOOS software and documentation on Oxford MOOS modules,
the Oxford web site is your source. For the latest on the core IvP Helm, behaviors, and MOOS
tools distributed by MIT, the moos-ivp.org web site is the source.

There are two mailing lists open to the public. The first list is for MOOS users, and the second
is for MOOS-IvP users. If the topic is related to one of the MOOS modules distributed from the
Oxford web site, the proper email list is the ”moosusers” mailing list. You can join the ”moosusers”
mailing list at the following URL:

https://lists.csail.mit.edu/mailman/listinfo/moosusers,

For topics related to the IvP Helm or modules distributed on the moos-ivp.org web site that
are not part of the Oxford MOOS distribution (see the software page on moos-ivp.org for help in
drawing the distinction), the ”moosivp” mailing list is appropriate. You can join the ”moosivp”
mailing list at the following URL:

https://lists.csail.mit.edu/mailman/listinfo/moosivp,

1.5.2 Documentation

Documentation on MOOS can be found on the Oxford University web site:

http://www.robots.ox.ac.uk/~pnewman/MOOSDocumentation/index.htm

This includes documentation on the MOOS architecture, programming new MOOS applications
as well as documentation on several bread-and-butter applications such as pAntler, pLogger, uMS,
pMOOSBridge, iRemote, iMatlab, pScheduler and more. Documentation on the IvP Helm, behaviors
and autonomy related MOOS applications not from Oxford can be found on the www.moos-ivp.org
web site under the Documentation link. Below is a summary of documents:

12

List of available MOOS-IvP related documentation

• An Overview of MOOS-IvP and a Brief Users Guide to the IvP Helm Autonomy Software -
This is the primary document describing the IvP Helm regarding how it works, the motivation
for its design, how it is used and configured, and example configurations and results from
simulation.

• MOOS-IvP Autonomy Tools Users Manual (this document) - A users manual for several
MOOS applications, and off-line tools for post-mission analysis collectively referred to as the
Alog Toolbox. The MOOS applications include: pNodeReporter, uTimerScript, uHelmScope,
uPokeDB, uSimMarine, uSimBeaconRange, uSimContactRange, pBasicContactMgr, uXMS, uTermCommand,
pMarineViewer, pEchoVar, and uProcessWatch. These applications are common supplementary
tools for running an autonomy system in simulation and on the water.

• Extending a MOOS-IvP Autonomy System and Users Guide to the IvPBuild Toolbox - This
document is a users manual for those wishing to write their own IvP Helm behaviors and
MOOS modules. It describes the IvPBehavior and CMOOSApp superclass. It also describes
the IvPBuild Toolbox containing a number of tools for building IvP Functions, the primary
output of behaviors. It provides an example template directory with example IvP Helm
behavior and an example MOOS application along with an example CMake build structure
for linking against the standard software MOOS-IvP software bundle. MIT CSAIL Technical
Report TR-2009-037.

1.6 What’s New in Release 4.2.1 and 4.2

Below is a brief, likely incomplete, summary of changes and fixes notable in Release 4.2/4.2.1
since Release 4.1. The only difference between 4.2.1 and 4.2 is that the uSimContactRange app
was renamed from the uSimActiveSonar app as it was known in 4.2, to avoid a name clash with a
separately developed app by the same name with similar functionality.

pHelmIvP

• Improved support for initializing variables. Users have option of specifying whether variable
initialization should override prevailing values in the MOOSDB or not.

• Journaling of IVPHELM SUMMARY status reports to reduce log footprint
• Added support for the --example, -e example MOOS block cmdline switch
• Significant under-the-hood changes to allow for behaviors to produce multiple objective func-

tions each.

alogview

• Many bug-fixes, drawing collective objective functions, scaling etc.
• Ability to view 1D (Depth) objective functions.
• Improvements under the hood in preparing for IvPBehaviors producing multiple objective

functions each. Major change to the helm.
• Added support for rendering XYVector objects
• Added support for rendering XYRangePulse objects

13

• Added support for rendering XYMarker objects
• Handles rare case of empty logfiles - bug fix.

uSimMarine

• Revamped code formerly known as iMarineSim
• Added Speed-Over-Ground and Heading-Over-Ground
• Added support for publishing both a ground-truth and degraded navigation solution. Handing

for testing navigation algorithms.
• Better support for external force vectors. Supports uSimCurrent
• Documentation added to the MOOS-IvP Autonomy Tools User Manual
• Added support for the --example, -e example MOOS block cmdline switch

pMarineViewer

• Stability fixes. A couple bugs caused crashes on Ubuntu systems.
• Added support for rendering XYVector objects
• Added support for rendering XYRangePulse objects
• Better support for determining the size of the OpGrid rendered
• Fixed Datum setting from the MOOS file rather than from the image .info file
• Allows for clearing of historical data

pNodeReporter

• Added support for publishing dual node reports when the simulator is publishing both a
ground-truth and degraded navigation solution.

• Added support for the --example, -e example MOOS block cmdline switch

pBasicContactMgr

• - Minor fix to ignore reports with name matching ownship name.
• Added support for the --example, -e example MOOS block cmdline switch

uHelmScope

• Support for the new IVPHELM SUMMARY journaling output of the helm
• Color output tied to change in helm decisions.
• Added support for the --example, -e example MOOS block cmdline switch

uTimerScript

• Added support for the --example, -e example MOOS block cmdline switch

uFunctionVis

• Many bug fixes especially in viewing collective objective functions

14

• Added support for view 1D (depth) objective functions

uSimCurrent

• A new application for simulating water current, coordinated with uSimMarine via uSimMa-
rine’s FORCE VECTOR interface.

uSimContactRange

• A new application for simulating an on-board sensor that provides range measurements to
other moving contacts.

uSimBeaconRange

• A new application for simulating an on-board sensor that provides a range measurement to a
beacon where either (a) the vehicle knows where it is but is trying to determine the position
of the beacon via a series of range measurements, or (b) the vehicle does not know where it
is but is trying to determine its own position based on the range measurements from one or
more beacons at known locations.

BHV StationKeep

• Improved robustness in low-power mode in detecting zero progress recovering to station point.

15

2 The uHelmScope Utility: Scoping on the IvP Helm

2.1 Brief Overview

The uHelmScope application is a console based tool for monitoring output of the IvP helm, i.e., the
pHelmIvP process. The helm produces a few key MOOS variables on each iteration that pack in a
substantial amount of information about what happened during a particular iteration. The helm
scope subscribes for and parses this information, and writes it to standard output in a console
window for the user to monitor. The user can dynamically pause or alter the output format to suit
one’s needs, and multiple scopes can be run simultaneously. The helm scope in no way influences
the performance of the helm - it is strictly a passive observer.

2.2 Console Output of uHelmScope

The example console output shown in Listing 1 is used for explaining the uHelmScope fields.

Listing 1 - Example uHelmScope output.
1 ============== uHelmScope Report ============== ENGAGED (17)

2 Helm Iteration: 66 (hz=0.38)(5) (hz=0.35)(66) (hz=0.56)(max)

3 IvP functions: 1

4 Mode(s): Surveying

5 SolveTime: 0.00 (max=0.00)

6 CreateTime: 0.02 (max=0.02)

7 LoopTime: 0.02 (max=0.02)

8 Halted: false (0 warnings)

9 Helm Decision: [speed,0,4,21] [course,0,359,360]

10 speed = 3.00

11 course = 177.00

12 Behaviors Active: ---------- (1)

13 waypt_survey (13.0) (pwt=100.00) (pcs=1227) (cpu=0.01) (upd=0/0)

14 Behaviors Running: --------- (0)

15 Behaviors Idle: ------------ (1)

16 waypt_return (22.8)

17 Behaviors Completed: ------- (0)

18

19 # MOOSDB-SCOPE ------------------------------------ (Hit ’#’ to en/disable)

20 #

21 # VarName Source Time Community VarValue

22 # ---------------- ----------- ------- --------- -----------

23 # BHV_WARNING n/a n/a n/a n/a

24 # NODE_REPORT_LOCAL pNode..rter 24.32 alpha "NAME=alpha,TYPE=KAYAK,MOOSDB"+

25 # DEPLOY* iRemote 11.25 alpha "true"

26 # RETURN* pHelmIvP 5.21 alpha "false"

27

28 @ BEHAVIOR-POSTS TO MOOSDB ----------------------- (Hit ’@’ to en/disable)

29 @

30 @ MOOS Variable Value

31 @ ------------- ------- (BEHAVIOR=waypt_survey)

32 @ PC_waypt_survey -- ok --

33 @ WPT_STAT_LOCAL vname=alpha,index=1,dist=80.47698,eta=26.83870

34 @ WPT_INDEX 1

35 @ VIEW_SEGLIST label,alpha_waypt_survey : 30,-20:30,-100:90,-100: +

36 @ ------------- ------- (BEHAVIOR=waypt_return)

37 @ PC_waypt_return RETURN = true

38 @ VIEW_SEGLIST label,alpha_waypt_return : 0,0

39 @ VIEW_POINT 0,0,0,waypt_return

There are three groups of information in the uHelmScope output on each report to the console -
the general helm overview (lines 1-17), a MOOSDB scope for a select subset of MOOS variables (lines

16

19-26), and a report on the MOOS variables published by the helm on the current iteration (lines
28-39). The output of each group is explained in the next three subsections.

2.2.1 The General Helm Overview Section of the uHelmScope Output

The first block of output produced by uHelmScope provides an overview of the helm. This is lines
1-17 in Listing 1, but the number of lines may vary with the mission and state of mission execution.
The integer value at the end of line 1 indicates the number of uHelmScope reports written to the
console. This can confirm to the user that an action that should result in a new report generation
has indeed worked properly. The integer on line 2 is the counter kept by the helm, incremented
on each helm iteration. The three sets of numbers that follow indicate the observed time between
helm iterations. These numbers are reported by the helm and are not inferred by the scope. The
first number is the average over the most recent five iterations. The second is the average over the
most recent 58 iterations. The last is the maximum helm-reported interval observed by the scope.
The number of iterations used to generate the first two numbers can be set by the user in the
uHelmScope configuration block. The default is 5 and 100 respectively. The number 58 is shown in
the second group simply because 100 iterations hadn’t been observed yet. The helm is apparently
only on iteration 66 in this example and uHelmScope apparently didn’t start and connect to the
MOOSDB until the helm was on iteration 8.

The value on Line 3 represents the the number of IvP functions produced by the active helm
behaviors, one per active behavior. The solve-time on line 5 represents the time, in seconds, needed
to solve the IvP problem comprised the n IvP functions. The number that follows in parentheses is
the maximum solve-time observed by the scope. The create-time on line 6 is the total time needed
by all active behaviors to produce their IvP function output. The loop time on line 7 is simply the
sum of lines 5 and 6. The Boolean on line 8 is true only if the helm is halted on an emergency
or critical error condition. Also on line 8 is the number of warnings generated by the helm. This
number is reported by the helm and not simply the number of warnings observed by the scope.
This number coincides with the number of times the helm writes a new message to the variable
BHV WARNING.

The helm decision space (i.e., IvP domain) is displayed on line 9, with the following lines used to
display the actual helm decision. Following this is a list of all the active, running, idle and completed
behaviors. At any point in time, each instantiated IvP behavior is in one of these four states and
each behavior specified in the behavior file should appear in one of these groups. Technically all
active behaviors are also running behaviors but not vice versa. So only the running behaviors
that are not active (i.e., the behaviors that could have, but chose not to produce an objective
function), are listed in the “Behaviors Running:” group. Immediately following each behavior the
time, in seconds, that the behavior has been in the current state is shown in parentheses. For the
active behaviors (see line 13) this information is followed by the priority weight of the behavior, the
number of pieces in the produced IvP function, and the amount of CPU time required to build the
function. If the behavior also is accepting dynamic parameter updates the last piece of information
on line 13 shows how many successful updates where made against how many attempts. A failed
update attempt also generates a helm warning, counted on line 8. The idle and completed behaviors
are listed by default one per line. This can be changed to list them on one long line by hitting the
’b’ key interactively. Insight into why an idle behavior is not in the running state can be found in
the another part of the report (e.g., line 37) described below in Section 2.2.3.

17

2.2.2 The MOOSDB-Scope Section of the uHelmScope Output

Part of understanding what is happening in the helm involves the monitoring of variables in the
MOOSDB that can either affect the helm or reveal what is being produced by the helm. Although
there are other MOOS scope tools available (e.g., uXMS or uMS), this feature does two things the
other scopes do not. First, it is simply a convenience for the user to monitor a few key variables in
the same screen space. Second, uHelmScope automatically registers for the variables that the helm
reasons over to determine the behavior activity states. It will register for all variables appearing in
behavior conditions, runflags, activeflags, inactiveflags, endflags and idleflags. Variables that are
registered for by this criteria are indicated by an asterisk at the end of the variable name. If the
output resulting from these automatic registrations becomes unwanted, it can be toggled off by
typing ’s’.

The lines comprising the MOOSDB-Scope section of the uHelmScope output are all preceded
by the ’#’ character. This is to help discern this block from the others, and as a reminder that
the whole block can be toggled off and on by typing the ’#’ character. The columns in Listing 1
are truncated to a set maximum width for readability. The default is to have truncation turned
off. The mode can be toggled by the console user with the ’t’ character, or set in the MOOS
configuration block or with a command line switch. A truncated entry in the VarValue column has
a ’+’ at the end of the line. Truncated entries in other columns will have “..” embedded in the
entry. Line 24 shows an example of both kinds of truncation.

The variables included in the scope list can be specified in the uHelmScope configuration block
of a MOOS file. In the MOOS file, the lines have the form:

VAR = VARIABLE_1, VARIABLE_2, VARIABLE_3, ...

An example configuration is given in Listing 4. Variables can also be given on the command line.
Duplicates requests, should they occur, are simply ignored. Occasionally a console user may want
to suppress the scoping of variables listed in the MOOS file and instead only scope on a couple
variables given on the command line. The command line switch -c will suppress the variables listed
in the MOOS file - unless a variable is also given on the command line. In line 23 of Listing 1, the
variable BHV WARNING is a virgin variable, i.e., it has yet to be written to by any MOOS process and
shows n/a in the four output columns. By default, virgin variables are displayed, but their display
can be toggled by the console user by typing ’-v’.

2.2.3 The Behavior-Posts Section of the uHelmScope Output

The Behavior-Posts section is the third group of output in uHelmScope lists MOOS variables and
values posted by the helm on the current iteration. Each variable was posted by a particular helm
behavior and the grouping in the output is accordingly by behavior. Unlike the variables in the
MOOSDB-Scope section, entries in this section only appear if they were written to on the current
iteration. The lines comprising the Behavior-Posts section of the uHelmScope output are all preceded
by the ’@’ character. This is to help discern this block from the others, and as a reminder that
the whole block can be toggled off and on by typing the ’@’ character. As with the output in the
MOOSDB-Scope output section, the output may be truncated. A trailing ’+’ at the end of the line
indicates the variable value has been truncated.

18

There are a few switches for keeping the output in this section concise. A behavior posts a few
standard MOOS variables on every iteration that may be essentially clutter for users in most cases.
A behavior FOO for example produces the variables PWT FOO, STATE FOO, and UH FOO which indicate
the priority weight, run-state, and tally of successful updates respectively. Since this information
is present in other parts of the uHelmScope output, these variables are by default suppressed in the
Behavior-Posts output. Two other standard variables are PC FOO and VIEW * which indicate the
precondition keeping a behavior in an idle state, and standard viewing hints to a rendering engine.
Since this information is not present elsewhere in the uHelmScope output, it is not masked out by
default. A console user can mask out the PWT, STATE * and UH * variables by typing ’m’. The PC *

and VIEW * variables can be masked out by typing ’M’. All masked variables can be unmasked by
typing ’u’.

2.3 Stepping Forward and Backward Through Saved Scope History

The user has the option of pausing and stepping forward or backward through helm iterations to
analyze how a set of events may have unfolded. Stepping one event forward or backward can be done
with the ’[’ and ’]’ keys respectively. Stepping 10 or 100 events can be done with the ’{’ and ’}, and ’(’
and ’)’ keys respectively. The current helm iteration being displayed is always shown on the second
line of the output. For each helm iteration, the uHelmScope process stores the information published
by the helm (Section 2.5), and thus the memory usage of uHelmScope would grow unbounded if left
unchecked. Therefore information is kept for a maximum of 2000 helm iterations. This number
is not a configuration parameter - to preclude a user from inadvertently setting this too high
and inducing the system maladies of a single process with runaway memory usage. To change
this number, a user must change the source code (in particular the variable m history size max

in the file HelmScope.cpp). The uHelmScope history is therefore a moving window of fixed size
that continues to shift right as new helm information is received. Stepping forward or backwards
therefore is subject to the constraints of this window. Any steps backward or forward will in effect
generate a new requested helm index for viewing. The requested index, if older than the oldest
stored index, will be set exactly to the oldest stored index. Similarly in the other direction. It’s
quite possible then to hit the ’[’ key to step left by one index, and have the result be a report that
is not one index older, but rather some number of indexes newer. Hitting the space bar or ’r’ key
always generates a report for the very latest helm information, with the ’r’ putting the scope into
streaming, i.e., continuous update, mode.

2.4 Console Key Mapping and Command Line Usage Summaries

The uHelmScope has a separate thread to accept user input from the console to adjust the content
and format of the console output. It operates in either the streaming mode, where new helm
summaries are displayed as soon as they are received, or the paused mode where no further output
is generated until the user requests it. The key mappings can be summarized in the console output
by typing the ’h’ key, which also sets the mode to paused. The key mappings shown to the user are
shown in Listing 2.

Listing 2 - Key mapping summary shown after hitting ’h’ in a console.

1 KeyStroke Function

2 --------- ---------------------------

19

3 Spc Pause and Update latest information once - now

4 r/R Resume information refresh

5 h/H Show this Help msg - ’r’ to resume

6 b/B Toggle Show Idle/Completed Behavior Details

7 t/T Toggle truncation of column output

8 m/M Toggle display of Hiearchical Mode Declarations

9 f Filter PWT_* UH_* STATE_* in Behavior-Posts Report

10 F Filter PC_* VIEW_* in Behavior-Posts Report

11 s/S Toggle Behavior State Vars in MOOSDB-Scope Report

12 u/U Unmask all variables in Behavior-Posts Report

13 v/V Toggle display of virgins in MOOSDB-Scope output

14 [/] Display Iteration 1 step prev/forward

15 {/} Display Iteration 10 steps prev/forward

16 (/) Display Iteration 100 steps prev/forward

17 # Toggle Show the MOOSDB-Scope Report

18 @ Toggle Show the Behavior-Posts Report

19

20 Hit ’r’ to resume outputs, or SPACEBAR for a single update

Several of the same preferences for adjusting the content and format of the uHelmScope output
can be expressed on the command line, with a command line switch. The switches available are
shown to the user by typing uHelmScope -h. The output shown to the user is shown in Listing 3.

Listing 3 - Command line usage of the uHelmScope application.

1 > uHelmScope -h

2 Usage: uHelmScope moosfile.moos [switches] [MOOSVARS]

3 -t: Column truncation is on (off by default)

4 -c: Exclude MOOS Vars in MOOS file from MOOSDB-Scope

5 -x: Suppress MOOSDB-Scope output block

6 -p: Suppress Behavior-Posts output block

7 -v: Suppress display of virgins in MOOSDB-Scope block

8 -r: Streaming (unpaused) output of helm iterations

9 MOOSVAR_1 MOOSVAR_2 MOOSVAR_N

The command line invocation also accepts any number of MOOS variables to be included in the
MOOSDB-Scope portion of the uHelmScope output. Any argument on the command line that does
not end in .moos, and is not one of the switches listed above, is interpreted to be a requested
MOOS variable for inclusion in the scope list. Thus the order of the switches and MOOS variables
do not matter. These variables are added to the list of variables that may have been specified in
the uHelmScope configuration block of the MOOS file. Scoping on only the variables given on the
command line can be accomplished using the -c switch. To support the simultaneous running of
more than one uHelmScope connected to the same MOOSDB, uHelmScope generates a random number
N between 0 and 10,000 and registers with the MOOSDB as uHelmScope N.

2.5 IvPHelm MOOS Variable Output Supporting uHelmScope Reports

There are six variables published by the pHelmIvP MOOS process, and registered for by the
uHelmScope process, that provide critical information for generating uHelmScope reports. They are:
IVPHELM SUMMARY, IVPHELM POSTINGS, IVPHELM ENGAGED, IVPHELM STATEVARS, IVPHELM DOMAIN, IVPHELM LIFE EVENT

and IVPHELM MODESET. The first three are produced on each iteration of the helm, and the last three
are typically only produced once when the helm is launched.

20

IVPHELM_SUMMARY = "iter=66,ofnum=1,warnings=0,utc_time=1209755370.74,solve_time=0.00,

create_time=0.02,loop_time=0.02,var=speed:3.0,var=course:108.0,halted=false,

running_bhvs=none,active_bhvs=waypt_survey$6.8$100.00$1236$0.01$0/0,

modes=MODE@ACTIVE:SURVEYING,idle_bhvs=waypt_return55.3n/a,completed_bhvs=none"

IVPHELM_POSTINGS = "waypt_return$@!$66$@!$PC_waypt_return=RETURN = true$@!$VIEW_SEGLIST=label,

alpha_waypt_return : 0,0$@!$VIEW_POINT=0,0,0,waypt_return$@!$PWT_BHV_WAYPT_RETURN=0

$@!$STATE_BHV_WAYPT_RETURN=0"

IVPHELM_POSTINGS = waypt_survey$@!$66$@!$PC_waypt_survey=-- ok --$@!$WPT_STAT_LOCAL=vname=alpha,

index=1,dist=80.47698,eta=26.83870$@!$WPT_INDEX=1$@!$VIEW_SEGLIST=label,

alpha_waypt_survey:30,-20:30,-100:90,-100:110,-60:90,-20$@!$PWT_BHV_WAYPT_SURVEY=100$@!$

STATE_BHV_WAYPT_SURVEY=2

IVPHELM_DOMAIN = "speed,0,4,21:course,0,359,360"

IVPHELM_STATEVARS = "RETURN,DEPLOY"

IVPHELM_MODESET = "---,ACTIVE#---,INACTIVE#ACTIVE,SURVEYING#ACTIVE,RETURNING"

IVPHELM_ENGAGED = "ENGAGED"

The IVPHELM SUMMARY variable contains all the dynamic information included in the general helm
overview (top) section of the uHelmScope output. It is a comma-separated list of var=val pairs.
The IVP DOMAIN variable also contributes to this section of output by providing the IvP domain used
by the helm. The IVPHELM POSTINGS variable includes a list of MOOS variables and values posted
by the helm for a given behavior. The helm writes to this variable once per iteration for each
behavior. The IVPHELM STATEVARS variable affects the MOOSDB-Scope section of the uHelmScope

output by identifying which MOOS variables are used by behaviors in conditions, runflags, endflags
and idleflags.

2.6 Configuration Parameters for uHelmScope

Configuration for uHelmScope amounts to specifying a set of parameters affecting the terminal
output format. An example configuration is shown in Listing 4, with all values set to the defaults.
Launching uHelmScope with a MOOS file that does not contain a uHelmScope configuration block is
perfectly reasonable. To see an example MOOS configuration block, enter the following from the
command-line:

$ uHelmScope -e

This will show the output shown in Listing 4 below.

Listing 4 - Example configuration of the uHelmScope application.

0 ===

1 uHelmScope Example MOOS Configuration

2 ===

3 Blue lines: Default configuration

4 Magenta lines: Non-default configuration

5

21

6 ProcessConfig = uHelmScope

7 {

8 AppTick = 1 // MOOSApp default is 4

9 CommsTick = 1 // MOOSApp default is 4

10

11 paused = false

12

13 hz_memory = 5,100

14

15 display_moos_scope = true // or {false}

16 display_bhv_posts = true // or {false}

17 display_virgins = true // or {false}

18 display_statevars = true // or {false}

19 truncated_output = false // or {true}

20 behaviors_concise = true // or {false}

21

22 var = NAV_X, NAV_Y, NAV_SPEED, NAV_DEPTH

23 var = DESIRED_HEADING, DESIRED_SPEED

24 }

Each of the parameters, with the exception of HZ MEMORY can also be set on the command line, or
interactively at the console, with one of the switches or keyboard mappings listed in Section 2.4.
A parameter setting in the MOOS configuration block will take precedence over a command line
switch. The HZ MEMORY parameter takes two integer values, the second of which must be larger than
the first. This is the number of samples used to form the average time between helm intervals,
displayed on line 2 of the uHelmScope output.

2.7 Publications and Subscriptions for uHelmScope

Variables published by the uHelmScope application

• NONE

Variables subscribed for by the uHelmScope application

• <USER-DEFINED>: Variables identified for scoping by the user in the uHelmScope will be sub-
scribed for. See Section 2.2.2.

• <HELM-DEFINED>: As described in Section 2.2.2, the variables scoped by uHelmScope include
any variables involved in the preconditions, runflags, idleflags, activeflags, inactiveflags, and
endflags for any of the behaviors involved in the current helm configuration.

• IVPHELM SUMMARY: See Section 2.5.

• IVPHELM POSTINGS: See Section 2.5.

• IVPHELM STATEVARS: See Section 2.5.

• IVPHELM DOMAIN: See Section 2.5.

• IVPHELM MODESET: See Section 2.5.

• IVPHELM ENGAGED: See Section 2.5.

22

3 The pMarineViewer Utility: A GUI for Mission Control

3.1 Brief Overview

The pMarineViewer application is a MOOS application written with FLTK and OpenGL for ren-
dering vehicles and associated information and history during operation or simulation. The typical
layout shown in Figure 2 is that pMarineViewer is running in its own dedicated local MOOS com-
munity while simulated or real vehicles on the water transmit information in the form of a stream
of node reports to the local community.

Figure 2: A common usage of the pMarineViewer is to have it running in a local MOOSDB community while receiving
node reports on vehicle poise from other MOOS communities running on either real or simulated vehicles. The
vehicles can also send messages with certain geometric information such as polygons and points that the view will
accept and render.

The user is able manipulate a geo display to see multiple vehicle tracks and monitor key infor-
mation about individual vehicles. In the primary interface mode the user is a passive observer, only
able to manipulate what it sees and not able to initiate communications to the vehicles. However
there are hooks available and described later in this section to allow the interface to accept field
control commands.

A key variable subscribed to by pMarineViewer is the variable NODE REPORT, which has the fol-
lowing structure given by an example:

NODE_REPORT = "NAME=nyak201,TYPE=kayak,UTC_TIME=1195844687.236,X=37.49,Y=-47.36,

SPD=2.40,HDG=11.17,DEPTH=0"

Reports from different vehicles are sorted by their vehicle name and stored in histories locally
in the pMarineViewer application. The NODE REPORT is generated by the vehicles based on either
sensor information, e.g., GPS or compass, or based on a local vehicle simulator.

23

3.2 Description of the pMarineViewer GUI Interface

The viewable area of the GUI has two parts - a geo display area where vehicles and perhaps other
objects are rendered, and a lower area with certain data fields associated with an active vehicle are
updated. A typical screen shot is shown in Figure 3 with two vehicles rendered - one AUV and one
kayak. Vehicle labels and history are rendered. Properties of the vehicle rendering such as the trail
length, size, and color, and vehicle size and color, and pan and zoom can be adjusted dynamically
in the GUI. They can also be set in the pMarineViewer MOOS configuration block. Both methods
of tuning the rendering parameters are described later in this section.

Figure 3: A screen shot of the pMarineViewer application running with two vehicles - one kayak platform, and one
AUV platform. The Unicorn AUV platform is the active platform meaning the data fields on the bottom reflect the
data for this platform.

The lower part of the display is dedicated to displaying detailed position information on a
single active vehicle. Changing the designation of which vehicle is active can be accomplished by
repeatedly hitting the ’v’ key. The active vehicle is always rendered as red, while the non-active
vehicles have a default color of yellow. Individual vehicle colors can be given different default values
(even red, which could be confusing) by the user. The individual fields are described below:

• VName: The name of the active vehicle associated with the data in the other GUI data fields. The
active vehicle is typically indicated also by changing to the color red on the geo display.

• VType: The platform type, e.g., AUV, Glider, Kayak, Ship or Unknown.

• X(m): The x (horizontal) position of the active vehicle given in meters in the local coordinate system.

• Y(m): The y (vertical) position of the active vehicle given in meters in the local coordinate system.

24

• Lat: The latitude (vertical) position of the active vehicle given in decimal latitude coordinates.

• Lon: The longitude (horizontal) position of the active vehicle given in decimal longitude coordinates.

• Speed: The speed of the active vehicle given in meters per second.

• Heading: The heading of the active vehicle given in degrees (0− 359.99).

• Depth: The depth of the active vehicle given in meters.

• Report-AGE: The elapsed time in seconds since the last received node report for the active vehicle.

• Time: Time in seconds since the pMarineViewer process launched.

• Warp: The MOOS Time-Warp value. Simulations may run faster than real-time by this warp factor.
MOOSTimeWarp is set as a global configuration parameter in the .moos file.

• Range: The range (in meters) of the active vehicle to a reference point. By default, this point is
the datum, or the (0,0) point in local coordinates. The reference point may also be set to another
particular vehicle. See Section 3.3.7 on the ReferencePoint pull-down menu.

• Bearing: The bearing (in degrees) of the active vehicle to a reference point. By default, this point
is the datum, or the (0,0) point in local coordinates. The reference point may also be set to another
particular vehicle. See Section 3.3.7 on the ReferencePoint pull-down menu.

In simulation, the age of the node report is likely to remain zero as shown in the figure, but
when operating on the water, monitoring the node report age field can be the first indicator when
a vehicle has failed or lost communications. Or it can act as an indicator of comms quality.

The lower three fields of the window are used for scoping on a single MOOS variable. See
Section 3.3.4 for information on how to configure the pMarineViewer to scope on any number of
MOOS variables and select a single variable via an optional pull-down menu. The scope fields are:

• Variable: The variable name of the MOOS variable currently being scoped, or "n/a" if no scope
variables are configured.

• Time: The variable name of the MOOS variable currently being scoped, or "n/a" if no scope variables
are configured.

3.3 Pull-Down Menu Options

Properties of the geo display rendering can be tuned to better suit a user or circumstance or for
situations where screen shots are intended for use in other media such as papers or PowerPoint.
There are two pull-down menus - the first deals with background properties, and the second deals
with properties of the objects rendered on the foreground. Many of the adjustable properties can be
adjusted by two other means besides the pull-down menus - by the hot keys defined for a particular
pull-down menu item, or by configuring the parameter in the MOOS file configuration block.

3.3.1 The “BackView” Pull-Down Menu

Most pull-down menu items have hot keys defined (on the right in the menu). For certain actions
like pan and zoom, in practice the typical user quickly adopts the hot-key interface. But the
pull-down menu is one way to have a form of hot-key documentation always handy. The zooming
commands affect the viewable area and apparent size of the objects. Zoom in with the ’i’ or ’I’ key,
and zoom out with the ’o’ or ’O’ key. Return to the original zoom with ctrl+’z’.

25

Figure 4: The BackView menu: This pull-down menu lists the options, with hot-keys, for affecting rendering
aspects of the geo-display background.

Panning is done with the keyboard arrow keys. Three rates of panning are supported. To pan
in 20 meter increments, just use the arrow keys. To pan “slowly” in one meter increments, use the
Alt + arrow keys. And to pan “very slowly”, in increments of a tenth of a meter, use the Ctrl +
arrow keys. The viewer supports two types of “convenience” panning. It will pan put the active
vehicle in the center of the screen with the ’C’ key, and will pan to put the average of all vehicle
positions at the center of the screen with the ’c’ key. These are part of the ’Vehicles’ pull-down
menu discussed in Section 3.3.3.

The background can be in one of two modes; either displaying a gray-scale background, or
displaying a geo image read in as a texture into OpenGL from an image file. The default is the geo
display mode if provided on start up, or the grey-scale mode if no image is provided. The mode
can be toggled by typing the ’b’ or ’B’ key. The geo-display mode can have two sub-modes if two
image files are provided on start-up. More on this in Section 3.7. This is useful if the user has
access to a satellite image and a map image for the same operation area. The two can be toggled
by hitting the back tick key. When in the grey-scale mode, the background can be made lighter by
hitting the ctrl+’b’ key, and darker by hitting the alt+’b’ key.

Hash marks can be overlaid onto the background. By default this mode is off, but can be toggled
with the ’h’ or ’H’ key. The hash marks are drawn in a grey-scale which can be made lighter by
typing the ctrl+’h’ key, and darker by typing the alt+’h’ key. Certain hash parameters can also
be set in the pMarineViewer configuration block of the MOOS file. The hash view parameter can

26

be set to either true or false. The default is false. The hash delta parameter can be set to any
integer in the range [10, 1000]. The default is 100.

3.3.2 The “GeoAttributes” Pull-Down Menu

The GeoAttributes pull-down menu allows the user to edit the properties of geometric objects
capable of being rendered by the pMarineViewer. In general the Polygon, SegList, Point, and
XYGrid objects are received by the viewer at run time to reflect artifacts generated by the IvP
Helm indicating aspects of progress during their mission. The polygons in Figure 5 for example
represents the set of waypoints being used by the vehicles shown.

Figure 5: The GeoAttributes menu: This pull-down menu lists the options and hot keys for affecting the rendering
of geometric objects.

The Datum, Marker and OpArea objects are typically read in once at start-up and reflect
persistent info about the operation area. The datum is a single point that represents (0,0) in local
coordinates. Marker objects typically represent physical objects in the environment such as a buoy,
or a fixed sensor. The OpArea objects are typically a combination of points and lines that reflect a
region of earth where a set of vehicles are being operated. Each category has a hot key that toggles
the rendering of all objects of the same type, and a secondary drop-down menu as shown in the
figure that allows the adjustment of certain rendering properties of objects. Many of the items in
the menu have form parameter = value, and these settings can also be achieved by including this
line in the pMarineViewer configuration block in the MOOS file.

27

3.3.3 The “Vehicles” Pull-Down Menu

The Vehicles pull-down menu deals with properties of the objects displayed in the geo display
foreground. The Vehicles-Toggle menu item will toggle the rendering of all vehicles and all trails.
The Cycle Focus menu item will set the index of the active vehicle, i.e., the vehicle who’s attributes
are being displayed in the lower output boxes. The assignment of an index to a vehicle depends
on the arrival of node reports. If an node report arrives for a previously unknown vehicle, it is
assigned a new index.

Figure 6: The ForeView menu: this pull-down menu of the pMarineViewer lists the options, with hot-keys, for
affecting rendering aspects of the objects on the geo-display foreground, such as vehicles and vehicle track history.

The center view menu items alters the center of the view screen to be panned to either the
position of the active vehicle, or the position representing the average of all vehicle positions. Once
the user has selected this, this mode remains sticky, that is the viewer will automatically pan as
new vehicle information arrives such that the view center remains with the active vehicle or the
vehicle average position. As soon as the user pans manually (with the arrow keys), the viewer
breaks from trying to update the view position in relation to received vehicle position information.
The rendering of the vehicles can made larger with the ’+’ key, and smaller with the ’-’ key, as part
of the VehicleSize pull-down menu as shown. The size change is applied to all vehicles equally as
a scalar multiplier. Currently there is no capability to set the vehicle size individually, or to set
the size automatically to scale.

28

Vehicle trail (track history) rendering can be toggled off and on with the ’t’ or ’T’ key. The
default is on. A set of predefined trail colors can be toggled through with the CTRL+’t’ key. The
individual trail points can be rendered with a line connecting each point, or by just showing the
points. When the node report stream is flowing quickly, typically the user doesn’t need or want
to connect the points. When the viewer is accepting input from an AUV with perhaps a minute
or longer delay in between reports, the connecting of points is helpful. This setting can be toggled
with the ’y’ or ’Y’ key, with the default being off. The size of each individual trail point rendering
can be made smaller with the ’[’ key, and larger with the ’]’ key.

The color of the active vehicle is by default red and can be altered to a handful of other colors
in the ActiveColor sub-menu of the Vehicles pull-down menu. Likewise the inactive color, which is
by default yellow, can be altered in the InactiveColor sub-menu. These colors can also be altered
by setting the active vcolor and inactive vcolor parameters in the pMarineViewer configuration
block of the MOOS file. They can be set to any color as described in the Colors Appendix.

3.3.4 The “MOOS-Scope” Pull-Down Menu

The “MOOS-Scope” pull-down menu allows the user to configure the pMarineViewer to scope on
one or more variables in the MOOSDB. The viewer allows visual scoping on only a single variable
at a time, but the user can select different variables via the pull-down menu, or toggle between the
current and previous variable with the ’/’ key, or cycle between all registered variables with the
CTRL+’/’ key. The scope fields are on the bottom of the viewer as shown in Figures 3 - 6. The
three fields show (a) the variable name, (b) the last time is was updated, and (c) the current value
of the variable. Configuration of the menu is done in the MOOS configuration block with entries
of the following form:

SCOPE = <variable>, <variable>, ...

The keyword SCOPE is not case sensitive, but the MOOS variables are. If no entries are provided
in the MOOS configuration block, the pull-down menu contains a single item, the "Add Variable"

item. By selecting this, the user will be prompted to add a new MOOS variable to the scope
list. This variable will then immediately become the actively scoped variable, and is added to the
pull-down menu.

3.3.5 The Optional ”Action” Pull-Down Menu

The “Action” pull-down menu allows the user to invoke pre-define pokes to the MOOSDB (the
MOOSDB to which the pMarineViewer is connected). While hooks for a limited number of pokes
are available by configuring on-screen buttons (Section 3.5.2), the number of buttons is limited to
four. The “Action” pull-down menu allows for as many entries as will reasonably be shown on
the screen. Each action, or poke, is given by a variable-value pair, and an optional grouping key.
Configuration is done in the MOOS configuration block with entries of the following form:

ACTION = MENU_KEY=<key> # <variable>=<value> # <variable>=<value> # ...

If no such entries are provided, this pull-down menu will not appear. The fields to the right of the
ACTION= are separated by the ’#’ character for convenience to allow several entries on one line. If
one wants to use the ’#’ character in one of the variable values, putting double-quotes around the

29

value will suffice to treat the ’#’ character as part of the value and not the separator. If the pair has
the key word MENU KEY on the left, the value on the right is a key associated with all variable-value
pairs on the line. When a menu selection is chosen that contains a key, then all variable-value pairs
with that key are posted to the MOOSDB. If the ACTION key word has a trailing ’+’ character as below,
the pull-down menu will render a line separator after the menu item. The following configuration
will result in the pull-down menu depicted in Figure 7.

ACTION = MENU_KEY=deploy # DEPLOY = true # RETURN = false

ACTION+ = MENU_KEY=deploy # MOOS_MANUAL_OVERIDE=false

ACTION = RETURN=true

Figure 7: The Action menu: The variable value pairs on each menu item may be selected for poking or writing
the MOOSDB. The three variable-value pairs above the menu divider will be poked in unison when any of the three
are chosen, because they were configured with the same key, <deploy>, shown to the right on each item.

The variable-value pair being poked on an action selection will determine the variable type by the
following rule of thumb. If the value is non-numerical, e.g., true, one, it is poked as a string. If
it is numerical it is poked as a double value. If one really wants to poke a string of a numerical
nature, the addition of quotes around the value will suffice to ensure it will be poked as a string.
For example:

ACTION = Vehicle=Nomar # ID="7"

As with any other publication to the MOOSDB, if a variable has been previously posted with one
type, subsequent posts of a different type will be ignored.

3.3.6 The Optional “Mouse-Context” Pull-Down Menu

When the user clicks the left or right mouse in the geo portion of the pMarineViewer window, the
variables MVIEWER LCLICK and MVIEWER RCLICK are published respectively with the geo location of
the mouse click, and the name of the active vehicle. This is described in more detail in Section
3.5.1. In short a publication of the following is typical:

30

MVIEWER_LCLICK = "x=82.0,y=-23.0,lat=43.825090305,lon=-70.32937733,vname=Unicorn"

The user may further optionally configure pMarineViewer to make additional pokes to the
MOOSDB on each left or right mouse click. The user may custom configure the values to allow
for the embedding of the operation area position detected under the mouse click. Configuration is
done in the MOOS configuration block with entries of the following form:

left_context[<key>] = <var-data-pair>

right_context[<key>] = <var-data-pair>

The left context and right context keywords are case insensitive. If no such entries are provided,
this pull-down menu will not appear. The <key> component is optional and allows for groups of
variable-data pairs with the same key to be posted together with the same mouse click. If the <key>

is empty, the defined poke will posted on all mouse clicks regardless of the grouping, as is the case
with MVIEWER LCLICK and MVIEWER RCLICK.

Patterns may be embedded in the string to allow the string to contain information on where
the user clicked in the operation area. These patterns are: $(XPOS) and $(YPOS) for the local x

and y position respectively, and $(LAT), and $(LON) for the latitude and longitude positions. The
pattern $(IX) will expand to an index (beginning with zero by default) that is incremented each
time a click/poke is made. This index can be configured to start with any desired index with the
lclick ix start and rclick ix start configuration parameters for the left and right mouse clicks
respectively. The following configuration will result in the pull-down menu depicted in Figure 8.

left_context[surface_point] = SPOINT = x=$(XPOS), y=$(YPOS), vname=$(VNAME)

left_context[surface_point] = COME_TO_SURFACE = true

left_context[return_point] = RETURN_POINT = x=$(XPOS), y=$(YPOS), vname=$(VNAME)

left_context[return_point] = RETURN_HOME = true

left_context[return_point] = RETURN_HOME_INDEX = $(IX)

right_context[loiter_point] = LOITER_POINT = lat=$(LAT), lon=$(LON)

right_context[loiter_point] = LOITER_MODE = true

Note in the figure that the first menu option is "no-action" which shuts off all MOOS pokes
associated with any defined groups (keys). In this mode, the MVIEWER LCLICK and MVIEWER RCLICK

pokes will still be made, along with any other poke configured without a <key>.

31

Figure 8: The Mouse-Context menu: Keywords selected from this menu will determine which groups of MOOS
variables will be poked to the MOOSDB on left or mouse clicks. The variable values may have information embedded
indicating the position of the mouse in the operation area at the time of the click.

3.3.7 The Optional “Reference-Point” Pull-Down Menu

The “Reference-Point” pull-down menu allows the user to select a reference point other than the
datum, the (0,0) point in local coordinates. The reference point will affect the data displayed in
the Range and Bearing fields in the viewer window. This feature was originally designed for field
experiments when vehicles are being operated from a ship. An operator on the ship running the
pMarineViewer would receive position reports from the unmanned vehicles as well as the present
position of the ship. In these cases, the ship is the most useful point of reference. Prior versions of
this code would allow for a single declaration of the ship name, but the the current version allows
for any number of ship names as a possible reference point. This allows the viewer to display the
bearing and range between two deployed unmanned vehicles for example. Configuration is done in
the MOOS configuration block with entries of the following form:

reference_vehicle = vehicle

If no such entries are provided, this pull-down menu will not appear. When the menu is present, it
looks like that shown in Figure 9. When the reference point is a vehicle with a known heading, the
user is able to alter the Bearing field from reporting either the relative bearing or absolute bearing.
Hot keys are defined for each.

32

Figure 9: The Reference-Point menu: This pull-down menu of the pMarineViewer lists the options for selecting
a reference point. The reference point determines the values for the Range and Bearing fields in the viewer for the
active vehicle. When the reference point is a vehicle with known heading, the user also may select whether the
Bearing is the relative bearing or absolute bearing.

3.4 Displayable Vehicle Shapes, Markers, Drop Points, and other Geometric
Objects

The pMarineViewer window displays objects in three general categories, (1) the vehicles based on
their position reports, (2) markers, which are generally static and things like triangles and squares
with labels, and (3) geometric objects such as polygons or lists of line segments that may indicate
a vehicle’s intended path or other such artifact of it’s autonomy situation.

3.4.1 Displayable Vehicle Shapes

The shape rendered for a particular vehicle depends on the type of vehicle indicated in the node
report received in pMarineViewer. There are four types that are currently handled, an AUV shape,
a glider shape, a kayak shape, and a ship shape, shown in Figure 10.

KayakAUV ShipGlider

Figure 10: Vehicles: Types of vehicle shapes known to the pMarineViewer.

33

The default shape for an unknown vehicle type is currently set to be the shape “ship”. The
default color for a vehicle is set to be yellow, but can be individually set within the pMarineViewer

MOOS configuration block with entries like the following:

vehicolor = alpha, turquoise

vehicolor = charlie, navy,

vehicolor = philly, 0.5, 0.9, 1.0

The parameter vehicolor is case insensitive, as is the color name. The vehicle name however is
case sensitive. All colors of the form described in the Colors Appendix are acceptable.

Mini Exercise #1: Poking a Vehicle into the Viewer.

Issues Explored: (1) Posting a MOOS message resulting in a vehicle rendered in pMarineViewer. (2)
Erasing and moving the vehicle.

• Try running the Alpha mission again from the Helm documentation. Note that when the simu-
lation is first launched, a kayak-shaped vehicle sits at position (0,0).

• Use the pMarineViewer MOOS-Scope utility to scope on the variable NODE REPORT LOCAL. Either
select "Add Variable" from the MOOS-Scope pull-down menu, or type the short-cut key ’a’.
Type the NODE REPORT LOCAL variable into the pop-up window, and hit Enter. The scope field at
the bottom of pMarineViewer should read something like:
NODE REPORT LOCAL = "NAME=alpha,TYPE=KAYAK,MOOSDB TIME=2327.07,UTC TIME=10229133704.48,

X=0.00,Y=0.00,LAT=43.825300,LON=-70.330400,SPD=0.00,HDG=180.00,YAW=180.00000,DEPTH=0.00,

LENGTH=4.0,MODE=DISENGAGED,ALLSTOP=ManualOverride

This is the posting that resulted in the vehicle currently rendered in the pMarineViewer window.
This was likely posted by the pNodeReporter application, but a node report can be poked directly
as well to experiment.

• Using the uPokeDB tool, try poking the MOOSDB as follows:
$ uPokeDB alpha.moos NODE REPORT="NAME=bravo,TYPE=glider,X=100,Y=-90,HDG=88,SPD=1.0,

UTC TIME=NOW,DEPTH=92,LENGTH=8"

Note the appearance of the glider at position (100,-90).

3.4.2 Displayable Marker Shapes

A set of simple static markers can be placed on the geo display for rendering characteristics of an
operation area such as buoys, fixed sensors, hazards, or other things meaningful to a user. The six
types of markers are shown in Figure 11. They are configured in the pMarineViewer configuration
block of the MOOS file with the following format:

// Example marker entries in a pMarineViewer config block of a .moos file

// Parameters are case insensitive. Parameter values (except type and color)

// are case sensitive.

marker = type=efield,x=100,y=20,label=alpha,COLOR=red,width=4.5

marker = type=square,lat=42.358,lon=-71.0874,color=blue,width=8

Each entry is a string of comma-separated pairs. The order is not significant. The only manda-
tory fields are for the marker type and position. The position can be given in local x-y coordinates

34

or in earth coordinates. If both are given for some reason, the earth coordinates will take precedent.
The width parameter is given in meters drawn to scale on the geo display. Shapes are roughly 10x10
meters by default. The GUI provides a hook to scale all markers globally with the ’ALT-M’ and
’CTRL-M’ hot keys and in the GeoAttributes pull-down menu.

Figure 11: Markers: Types of markers known to the pMarineViewer.

The color parameter is optional and markers have the default colors shown in Figure 11. Any
of the colors described in the Colors Appendix are fair game. The black part of the Gateway and
Efield markers is immutable. The label field is optional and is by default the empty string. Note
that if two markers of the same type have the same non-empty label, only the first marker will be
acknowledged and rendered. Two markers of different types can have the same label.

In addition to declaring markers in the pMarineViewer configuration block, markers can be
received dynamically by pMarineViewer through the VIEW MARKER MOOS variable, and thus can
originate from any other process connected to the MOOSDB. The syntax is exactly the same, thus the
above two markers could be dynamically received as:

VIEW_MARKER = "type=efield,x=100,y=20,SCALE=4.3,label=alpha,COLOR=red,width=4.5"

VIEW_MARKER = "type=square,lat=42.358,lon=-71.0874,scale=2,color=blue,width=8"

The effect of a “moving” marker, or a marker that changes color, can be achieved by repeatedly
publishing to the VIEW MARKER variable with only the position or color changing while leaving the
label and type the same.

3.4.3 Displayable Drop Points

A user may be interested in determining the coordinates of a point in the geo portion of the
pMarineViewer window. The mouse may be moved over the window and when holding the SHIFT

key, the point under the mouse will indicate the coordinates in the local grid. When holding the
CTRL key, the point under the coordinates are shown in lat/lon coordinates. The coordinates are
updated as the mouse moves and disappear thereafter or when the SHIFT or CTRL keys are release.
Drop points may be left on the screen by hitting the left mouse button at any time. The point
with coordinates will remain rendered until cleared or toggled off. Each click leaves a new point,
as shown in Figure 12.

35

Figure 12: Drop points: A user may leave drop points with coordinates on the geo portion of the pMarineViewer
window. The points may be rendered in local coordinates or in lat/lon coordinates. The points are added by clicking
the left mouse button while holding the SHIFT key or CTRL key. The rendering of points may be toggled on/off,
cleared in their entirety, or reduced by popping the last dropped point.

Parameters regarding drop points are accessible from the GeoAttr pull-down menu. The rendering
of drop points may be toggled on/off by hitting the ’r’ key. The set of drop points may be cleared
in its entirety. Or the most recently dropped point may be removed by typing the CTRL-r key. The
pull-down menu may also be used to change the rendering of coordinates from "as-dropped" where
some points are in local coordinates and others in lat/lon coordinates, to "local-grid" where all
coordinates are rendered in the local grid, or "lat-lon" where all coordinates are rendered in the
lat/lon format.

3.4.4 Displayable Geometric Objects

Some additional objects can be rendered in the viewer such as convex polygons, points, and a set
of line segments. In Figures 3 and 4, each vehicle has traversed to and is proceeding around a
hexagon pattern. This is apparent from both the rendered hexagon, and confirmed by the trail
points. Displaying certain markers in the display can be invaluable in practice to debugging and
confirming the autonomy results of vehicles in operation. The intention is to allow for only a few
key additional objects to be drawable to avoid letting the viewer become overly specialized and
bloated.

In addition to the NODE REPORT variable indicating vehicle pose, pMarineViewer registers for the
following additional MOOS variables - VIEW POLYGON, VIEW SEGLIST, VIEW POINT. Example values of
these variables:

VIEW_POLYGON = label,foxtrot:85,-9:100,-35:85,-61:55,-61:40,-35:55,-9

VIEW_POINT = x=10,y=-80,label=bravo

VIEW_SEGLIST = label,charlie:0,100:50,-35:25,-63

36

Each variable describes a data structure implemented in the geometry library linked to by
pMarineViewer. Instances of these objects are initialized directly by the strings shown above. A key
member variable of each geometric object is the label since pMarineViewer maintains a (C++, STL)
map for each object type, keyed on the label. Thus a newly received polygon replaces an existing
polygon with the same label. This allows one source to post its own geometric cues without clashing
with another source. By posting empty objects, i.e., a polygon or seglist with zero points, or a point
with zero radius, the object is effectively erased from the geo display. The typical intended use is
to let a behavior within the helm to post its own cues by setting the label to something unique to
the behavior. The VIEW POLYGON listed above for example was produced by a loiter behavior and
describes a hexagon with the six points that follow.

3.5 Support for Command-and-Control Usage

For the most part pMarineViewer is intended to be only a receiver of information from the vehicles
and the environment. Adding command and control capability, e.g., widgets to re-deploy or ma-
nipulate vehicle missions, can be readily done, but make the tool more specialized, bloated and less
relevant to a general set of users. A certain degree of command and control can be accomplished
by poking key variables and values into the local MOOSDB, and this section describes three methods
supported by pMarineViewer for doing just that.

3.5.1 Poking the MOOSDB with Geo Positions

The graphic interface of pMarineViewer provides an opportunity to poke information to the MOOSDB

based on visual feedback of the operation area shown in the geo display. To exploit this, two
command and control hooks were implemented with a small footprint. When the user clicks on
the geo display, the location in local coordinates is noted and written out to one of two variables -
MVIEWER LCLICK for left mouse clicks, and MVIEWER RCLICK for right mouse clicks, with the following
syntax:

MVIEWER_LCLICK = "x=958.0,y=113.0,vname=nyak200",

and

MVIEWER_RCLICK = "x=740.0,y=-643.0,vname=nyak200".

One can then write another specialized process, e.g., pViewerRelay, that subscribes to these two
variables and takes whatever command and control actions desired for the user’s needs. One such
incarnation of pViewerRelay was written (but not distributed or addressed here) that interpreted
the left mouse click to have the vehicle station-keep at the clicked location.

3.5.2 Configuring GUI Buttons for Command and Control

The pMarineViewer GUI can be optionally configured to allow for four push-buttons to be enabled
and rendered in the lower-right corner. Each button can be associated with a button label, and a
list of variable-value pairs that will be poked to the MOOSDB to which the pMarineViewer process is
connected. The basic syntax is as follows:

37

BUTTON_ONE = <label> # <variable>=VALUE # <variable>=<value> ...

BUTTON_TWO = <label> # <variable>=VALUE # <variable>=<value> ...

BUTTON_THREE = <label> # <variable>=VALUE # <variable>=<value> ...

BUTTON_FOUR = <label> # <variable>=VALUE # <variable>=<value> ...

The left-hand side contains one of the four button keywords, e.g., BUTTON ONE. The right-hand
side consists of a ’#’-separated list. Each component in this list is either a ’=’-separated variable-
value pair, or otherwise it is interpreted as the button’s label. The ordering does not matter and
the ’#’-separated list can be continued over multiple lines as in lines 59-60 in Listing 5 on page 40.

The variable-value pair being poked on a button call will determine the variable type by the
following rule of thumb. If the value is non-numerical, e.g., true, one, it is poked as a string. If
it is numerical it is poked as a double value. If one really wants to poke a string of a numerical
nature, the addition of quotes around the value will suffice to ensure it will be poked as a string.
For example:

BUTTON_ONE = Start # Vehicle=Nomar # ID="7"

In this case, clicking the button labeled "Start" will result in two pokes, the second of which will
have a string value of "7", not a numerical value. As with any poke to the MOOSDB of a given
variable-value pair, if the value is of a type inconsistent with the first write to the DB under that
variable name, it will simply by ignored.

As described in Section 3.3.5, additional variable-value pairs for poking the MOOSDB can be
configured in the “Action” pull-down menu. Unlike the use of buttons, which is limited to four,
the number of actions in the pull-down menu is limited only by what can reasonably be rendered
on the user’s screen.

3.6 Configuration Parameters for pMarineViewer

Many of the display settings available in the pull-down menus described in Sections 3.3 can also
be set in the pMarineViewer block of the MOOS configuration file. Mostly this redundancy is for
convenience for a user to have the desired settings without further keystrokes after start-up. An
example configuration block is shown in Listing 5.

Parameter Description Allowed Values Default

hash view Turning off or on the hash marks. true, false true

hash delta Distance between hash marks [10, 1000] 50

hash shade Shade of hash marks - 0 is black to 1 is white [0, 1.0] 0.65

back shade Shade of hash marks - 0 is black to 1 is white [0, 1.0] 0.55

tiff view Background image used if set to true true, false true

tiff type Uses the first (A) image if set to true true, false true

tiff file Filename of a tiff file background image any tiff file Default.tif

tiff file b Filename of a tiff file background image any tiff file DefaultB.tif

view center The center of the viewing image (the zoom-to point) (x, y) (0, 0)

Table 1: Background parameters: Parameters affecting the rendering of the pMarineViewer background.

38

Parameter Description Allowed Values Default

bearing lines viewable Render bearing line objects true, false,

toggle

true

trails color Color of points rendered in a trail history any color white

trails connect viewable Render lines between dots if true true, false,

toggle

false

trails history size Number of points stored in a trail history [0, 10,000] 1,000

trails length Number of points rendered in a trail history [0, 10,000] 100

trails point size Size of dots rendered in a trail history [0, 100] 1

trails viewable Trail histories note rendered if false true, false,

toggle

true

vehicles active color Color of the one active vehicle any color red

vehicles inactive color Color of other inactive vehicles any color yellow

vehicles name active Active vehicle set to the named vehicle known name 1st

vehicles name center Center vehicle set to the named vehicle known name n/a

vehicles name color Color of the font for all vehicle labels any color white

vehicles name viewable Vehicle labels not rendered if set to off off, names,

names+mode,

names+shortmode,

names+depth

names

vehicles shape scale Change size rendering - 1.0 is actual size [0.1, 100] 1

vehicles viewable Vehicles not rendered is set to false true, false,

toggle

false

vehicolor Override inactive vehicle color individually See p.x n/a

Table 2: Vehicle parameters: Parameters affecting how vehicles are rendered in pMarineViewer.

Parameter Description Allowed Values Default

marker Add and newly defined marker See p. 34 n/a

markers viewable If true all markers are rendered true, false,

toggle

true

markers labels viewable If true marker labels are rendered true, false,

toggle

true

markers scale global Marker widths are multiplied by this factor [0.1, 100] 1

markers label color Color of rendered marker labels any color white

Table 3: Marker parameters: Parameters affecting the rendering of the pMarineViewer markers.

39

Parameter Description Allowed Values Default

circle edge color Color rendered circle lines any color yellow

circle edge width Line width of rendered circle lines [0, 10] 2

grid edge color Color of rendered grid lines any color white

grid edge width Line width of rendered grid lines [0, 10] 2

grid viewable all If true grids will be rendered true, false true

grid viewable labels If true grid labels will be rendered true, false true

point viewable all If true points will be rendered true, false true

point viewable labels If true point labels will be rendered true, false true

point vertex color Color of rendered points any color yellow

point vertex size Size of rendered points [0, 10] 4

polygon edge color Color of rendered polygon lines any color yellow

polygon edge width Line width of rendered polygon edges [0, 10] 1

polygon label color Color rendered polygon labels any color khaki

polygon viewable all If true all polygons are rendered true, false true

polygon viewable labels If true polygon labels are rendered true, false true

polygon vertex color Color of rendered polygon vertices any color red

polygon vertex size Size of rendered polygon vertices [0, 10] 3

seglist edge color Color or rendered seglist lines any color white

seglist edge width Line width of rendered seglist edges [0,10 1

seglist label color Color of rendered seglist labels any color orange

seglist viewable all If true all seglists are rendered true, false true

seglist viewable labels If true seglist labels are rendered true, false true

seglist vertex color Color of rendered seglist vertices any color blue

seglist vertex size Size of rendered seglist vertices [0, 10] 3

Table 4: Geometric parameters: Parameters affecting the rendering of the pMarineViewer geometric objects.

Parameter Description Allowed Values Default

lclick ix start Starting index for left mouse index macro Any integer 0

rclick ix start Starting index for right mouse index macro Any integer 0

Table 5: Other parameters: Miscellaneous configuration parameters.

Listing 5 - An example pMarineViewer configuration block.

1 LatOrigin = 47.7319

2 LongOrigin = -122.8500

3

4 //--

5 // pMarineViewer configuration block

6

7 ProcessConfig = pMarineViewer

8 {

9 // Standard MOOS parameters affecting comms and execution

10 AppTick = 4

11 CommsTick = 4

12

13 // Set the background images

40

14 TIFF_FILE = long_beach_sat.tif

14 TIFF_FILE_B = long_beach_map.tif

15

16

17 // Parameters and their default values

18 hash_view = false

19 hash_delta = 50

20 hash_shade = 0.65

21 back_shade = 0.70

22 trail_view = true

23 trail_size = 0.1

24 tiff_view = true

25 tiff_type = true

26 zoom = 1.0

27 verbose = true

28 vehicles_name_viewable = false

29 bearing_lines_viewable = true

30

31 // Setting the vehicle colors - default is yellow

32 vehicolor = henry,dark_blue

33 vehicolor = ike,0.0,0.0,0.545

34 vehicolor = jane,hex:00,00,8b

35

36 // All polygon parameters are optional - defaults are shown

37 // They can also be set dynamically in the GUI in the GeoAttrs pull-down menu

38 polygon_edge_color = yellow

39 polygon_vertex_color = red

40 polygon_label_color = khaki

41 polygon_edge_width = 1.0

42 polygon_vertex_size = 3.0

43 polygon_viewable_all = true;

44 polygon_viewable_labels = true;

45

46 // All seglist parameters are optional - defaults are shown

47 // They can also be set dynamically in the GUI in the GeoAttrs pull-down menu

48 seglist_edge_color = white

49 seglist_vertex_color = dark_blue

50 seglist_label_color = orange

51 seglist_edge_width = 1.0

52 seglist_vertex_size = 3.0

53 seglist_viewable_all = true;

54 seglist_viewable_labels = true;

55

56 // All point parameters are optional - defaults are shown

57 // They can also be set dynamically in the GUI in the GeoAttrs pull-down menu

58 point_vertex_size = 4.0;

59 point_vertex_color = yellow

60 point_viewable_all = true;

61 point_viewable_labels = true;

62

63 // Define two on-screen buttons with poke values

64 button_one = DEPLOY # DEPLOY=true

65 button_two = MOOS_MANUAL_OVERIDE=false # RETURN=false

66 button_two = RETURN # RETURN=true

67 button_three = DEPTH-10 # OPERATION_DEPTH=10

41

68 button_four = DEPTH-30 # OPERATION_DEPTH=30

69

70 // Declare variable for scoping. Variable names case sensitive

71 scope = PROC_WATCH_SUMMARY

72 scope = BHV_WARNING

73 scope = BHV_ERROR

74

75 // Declare Variable-Value pairs for convenient poking of the MOOSDB

76 action = OPERATION_DEPTH=50

77 action = OPERATION_DEPTH=0 # STATUS="Coming To the Surface"

78 }

Color references as in lines 31-33 can be made by name or by hexadecimal or decimal notation.
(All three colors in lines 31-33 are the same but just specified differently.) See the Colors Appendix
for a list of available color names and their hexadecimal equivalent.

The VERBOSE parameter on line 27 controls the output to the console. The console output
lists the types of mail received on each iteration of pMarineViewer. In the non-verbose mode, a
single character is output for each received mail message, with a ’*’ for NODE REPORT, a ’P’ for a
VIEW POLYGON, a ’.’ for a VIEW POINT, and a ’S’ for a VIEW SEGLIST. In the verbose mode, each received
piece of mail is listed on a separate line and the source of the mail is also indicated. An example
of both modes is shown in Listing 6.

Listing 6 - An example pMarineViewer console output.

1 // Example pMarineViewer console output NOT in verbose mode

2

3 13.56 > ****..

4 13.82 > **..

5 14.08 > **..

6 14.35 > **..

7 14.61 > ****.P.P

8 14.88 > **..

9 15.14 > **..

10

11 // Example pMarineViewer console output in verbose mode

12

13 15.42 >

14 NODE-REPORT(nyak201)

15 NODE-REPORT(nyak200)

16 Point(nyak201_wpt)

17 Point(nyak200_wpt)

18

19 15.59 >

20 Point(nyak201)

21 Poly(nyak201-LOITER)

22 NODE-REPORT(nyak201)

23 NODE-REPORT(nyak200)

24 Point(nyak200)

25 Poly(nyak200-LOITER)

42

3.7 More about Geo Display Background Images

The geo display portion of the viewer can operate in one of two modes, a grey-scale background, or
an image background. Section 3.3.1 addressed how to switch between modes in the GUI interface.
To use an image in the geo display, the input to pMarineViewer comes in two files, an image file in
TIFF format, and an information text file correlating the image to the local coordinate system. The
file names should be identical except for the suffix. For example dabob bay.tif and dabob bay.info.
Only the .tif file is specified in the pMarineViewer configuration block of the MOOS file, and the
application then looks for the corresponding .info file. The info file contains six lines - an example
is given in Listing 7.

The geo display portion of the viewer can operate in one of two modes, a grey-scale background,
or an image background. Section 3.3.1 addressed how to switch between modes in the GUI interface.
To use an image in the geo display, the input to pMarineViewer comes in two files. The first is an
image file in TIFF format. This file is read by the lib tiff library linked to pMarineViewer and,
as of this writing, this library requires the image to be square, and the number of pixels in each
dimension to be a power of two. The jpeg image patches served from Google Maps for example all
this property.

The second file is an information text file correlating the image to the local coordinate sys-
tem. The file names should be identical except for the suffix. For example dabob bay.tif and
dabob bay.info. Only the .tif file is specified in the pMarineViewer configuration block of the
MOOS file, and the application then looks for the corresponding .info file. The info file contains
six lines - an example is given in Listing 7.

Listing 7 - An example .info file for the pMarineViewer

1 // Lines may be in any order, blank lines are ok

2 // Comments begin with double slashes

3

4 datum_lat = 47.731900

5 datum_lon = -122.85000

6 lat_north = 47.768868

7 lat_south = 47.709761

8 lon_west = -122.882080

9 lon_east = -122.794189

All four latitude/longitude parameters are mandatory. The two datum lines indicate where
(0, 0) in local coordinates is in earth coordinates. However, the datum used by pMarineViewer is
determined by the LatOrigin and LongOrigin parameters set globally in the MOOS configuration
file. The datum lines in the above information file are used by applications other than pMarineViewer

that are not configured from a MOOS configuration file. The lat north parameters correlate the
upper edge of the image with its latitude position. Likewise for the other three parameters and
boundaries. Two image files may be specified in the pMarineViewer configuration block. This
allows a map-like image and a satellite-like image to be used interchangeably during use. (Recall
the ToggleBackGroundType entry in the BackView pull-down menu discussed earlier.) An example
of this is shown in Figure 13 with two images of Dabob Bay in Washington State. Both image files
where created from resources at www.maps.google.com.

43

Figure 13: Dual background geo images: Two images loaded for use in the geo display mode of pMarineViewer.
The user can toggle between both as desired during operation.

In the configuration block, the images can be specified by:

TIFF_FILE = dabob_bay_map.tif

TIFF_FILE_B = dabob_bay_sat.tif

By default pMarineViewer will look for the files Default.tif and DefaultB.tif in the local directory
unless alternatives are provided in the configuration block.

3.8 Publications and Subscriptions for pMarineViewer

3.8.1 Variables published by the pMarineViewer application

Variables published by pMarineViewer are summarized in Table 6 below. A more detail description
of each variable follows the table.

Variable Description

1 MVIEWER LCLICK The position in local coordinates of a user left mouse button click

2 MVIEWER RCLICK The position in local coordinates of a user right mouse button click

3 HELM MAP CLEAR A message read by pHelmIvP to re-send information on viewer startup.

Table 6: Variables published by the pMarineViewer application.

Note that pMarineViewer may be configured to poke the MOOSDB via either the Action pull-
down menu (Section 3.3.5), or via configurable GUI buttons (Section 3.5.2). It may also publish
to the MOOSDB variables configured to mouse clicks (Section 3.3.6). So the list of variables
that pMarineViewer publishes is somewhat user dependent, but the following few variables may be
published in all configurations.

44

• MVIEWER LCLICK: When the user clicks the left mouse button, the position in local coordinates,
along with the name of the active vehicle is reported. This can be used as a command and
control hook as described in Section 3.5. As an example:

MVIEWER_LCLICK = ‘‘x=-56.0,y=-110.0,vname=alpha’’

• MVIEWER RCLICK: This variable is published when the user clicks with the right mouse button.
The same information is published as with the left click.

• HELM MAP CLEAR: This variable is published once when the viewer connects to the MOOSDB. It is
used in the pHelmIvP application to clear a local buffer used to prevent successive identical
publications to its variables.

3.8.2 Variables subscribed for by pMarineViewer application

• BEARING LINE: A string designation of a bearing from a given vehicle in a given direction. An
example:

BEARING_LINE = "vname=alpha, bearing=174, range=90, vector_width=1, vector_color=green,

time_limit=15"

or

BEARING_LINE = "vname=alpha, bearing=174, range=90, vector_width=1, vector_color=green,

time_limit=nolimit, bearing_absolute=true"

• NODE REPORT: This is the primary variable consumed by pMarineViewer for collecting vehicle
position information. An example:

NODE_REPORT = "NAME=nyak201,TYPE=kayak,MOOSDB_TIME=53.049,UTC_TIME=1195844687.236,X=37.49,

Y=-47.36, SPD=2.40,HDG=11.17,DEPTH=0"

• NODE REPORT LOCAL: This serves the same purpose as the above variable. In some simulation
cases this variable is used.

• TRAIL RESET: When the viewer receives this variable it will clear the history of trail points
associated with each vehicle. This is used when the viewer is run with a simulator and the
vehicle position is reset and the trails become discontinuous.

• VIEW POLYGON: A string representation of a polygon.

• VIEW POINT: A string representation of a point.

• VIEW SEGLIST: A string representation of a segment list.

• VIEW CIRCLE: A string representation of a circle.

• VIEW MARKER: A string designation of a marker type, size and location.

45

4 The uXMS Utility: Scoping the MOOSDB from the Console

4.1 Brief Overview

The uXMS application is a terminal based tool for live scoping on a MOOSDB process. It is not
dependent on any graphic libraries and it is more likely to run out-of-the-box on machines that may
not have requisite libraries like FLTK installed. It is easily configured from the command line or
a MOOS configuration block to scope on as little as one variable. Listing 8 below shows what the
output may look like with the shown command line invocation. The primary use of uXMS is to show
a snapshot of the MOOSDB for a given subset of variables. A second use is to show the evolving
history of a variable which may catch activity that eludes the perspective of a periodic snapshot.

Listing 8 - Example output from uXMS.

1 > uXMS alpha.moos NAV_X NAV_Y NAV_HEADING NAV_SPEED MOOSMANUAL_OVERIDE DEPLOY IVPHELM_ENGAGED

2

3 VarName (S)ource (T)ime (C)ommunity VarValue (MODE = SCOPE:STREAMING)

4 ---------------- ---------- ---------- ---------- ----------- (89)

5 NAV_X uSimMarine 60.47 alpha 59.83539

6 NAV_Y uSimMarine 60.47 alpha -81.67491

7 NAV_HEADING uSimMarine 60.47 alpha -179.77803

8 MOOS_MANUAL_OVERIDE pMarineViewer 2.54 alpha "false"

9 DEPLOY pMarineViewer 2.54 alpha "true"

10 IVPHELM_ENGAGED pHelmIvP 59.83 alpha "ENGAGED"

11 NAV_SPEED uSimMarine 60.47 alpha 2

Scoping on the MOOSDB is a very important tool in the process of development and debugging.
The uXMS tool has a substantial set of configuration choices for making this job easier by bringing
just the right data to the user’s attention. The default usage, as shown in Listing 8 remains fairly
simple, but there are other options discussed in this section that are worth exploiting by the more
experienced user.

4.2 The uXMS Refresh Modes

Reports such as the one shown in Listing 8 are generated either automatically or specifically when
the user asks for it. The latter is important in situations where bandwidth is low. This feature was
the origional motivation for developing uXMS. The three refresh modes are shown in Figure 14.

Figure 14: Refresh Modes: The uXMS refresh mode determines when a new report is written to the screen. The
user may switch between modes with the shown keystrokes.

46

The refresh mode may be changed by the user as uXMS is running, or it may be given an initial mode
value on startup from the command line with --mode=paused, --mode=events, or --mode=streaming.
The latter is the default.

4.2.1 The Streaming Refresh Mode

In the streaming refresh mode, the default refresh mode, a new report is generated and written to
stdout on every iteration of the uXMS application. The frequency is simply controlled by the AppTick

setting in the MOOS configuration block. The refresh mode is shown in parentheses in the report
header as in line 3 of Listing 8. Each report written to the terminal will increment the counter at
the end of the line below, e.g., line 4 in Listing 8. The user may re-enter the streaming mode by
hitting the ’r’ key.

4.2.2 The Events Refresh Mode

In the events refresh mode, a new report is generated only when new mail is received for one of the
scoped variables. Note this does not necessarily mean that the value of the variable has changed,
only that it has been written to again by some process. This mode is useful in low-bandwidth
situations where a user cannot afford the streaming refresh mode, but may be monitoring changes
to one or two variables. This mode may be entered by hitting the ’e’ key, or chosen as the initial
refresh mode at startup from the command line with the --mode=events option.

4.2.3 The Paused Refresh Mode

In the paused refresh mode, the report will not be updated until the user specifically requests a new
update by hitting the spacebar key. This mode is the preferred mode in low bandwidth situations,
and simply as a way of stabilzing the rapid refreshing output of the other modes so one can actually
read the output. This mode is entered by the spacebar key and subsequent hits refresh the output
once. To launch uXMS in the paused mode, use the --mode=paused command line switch.

4.3 The uXMS Content Modes

The contents of the uXMS report vary between one of a few modes. In the scoping mode, a snapshot
of a subset of MOOS variables is generated, similar to what is shown in Listing 8. In the history
mode the recent history of changes to a single MOOS variable is reported.

Figure 15: Content Modes: The uXMS content mode determines what data is included in each new report. The
two major modes are the scoping and history modes. In the former, snapshots of one or more MOOS variables are
reported. In the latter, the recent history of a single variable is reported.

47

4.3.1 The Scoping Content Mode

The scoping mode has two sub-modes as shown in Figure 15. In the first sub-mode, the SelectVars
sub-mode, the only variables shown are the ones the user requested. They are requested on the
command-line upon start-up (Section 4.5), or in the uXMS configuration block in the .moos file
provided on startup, or both. One may also select variables for viewing by specifying one or MOOS
processes with the command line option --src=<process>,<process>,.... All variables from these
processes will then be included in the scope list.

In the AllVars sub-mode, all MOOS variables in the MOOSDB are displayed, unless explicitly
filtered out. The most common way of filtering out variables in the AllVars sub-mode is to provide
a filter string interactively by typing the ’/’ key and entering a filter. Only lines that contain this
string as a substring in the variable name will then be shown. The filter may also be provided on
startup with the --filter=pattern command line option.

In both sub-modes, variables that would otherwise be included in the report may be masked
out with two further options. Variables that have never been written to by any MOOS process
are referred to as virgin variables, and by default are shown with the string "n/a" in their value
column. These may be shut off from the command line with --mask=virgin, or in the MOOS
configuration block by including the line DISPLAY VIRGINS=false. Similarly, variables with an
empty string value may be masked out from the command line with --mask=empty, or with the
line DISPLAY EMPTY STRINGS=false in the MOOS configuration block of the .moos file.

4.3.2 The History Content Mode

In the history mode, the recent values for a single MOOS variable are reported. Contrast this
with the scoping mode where a snapshot of a variable value is displayed, and that value may have
changed several times between successive reports. The output generated in this mode may look
like the following, in Listing 9, which captures a vehicle going into a turn after a long period of
near steady heading:

Listing 9 - Example report output in the history content mode of uXMS.

0 VarName (S)ource (T)ime VarValue (MODE = HISTORY:PAUSED)

1 ---------------- ---------- ---------- ----------- (132)

2 DESIRED_HEADING pHelmIvP 1721.70 (43) 115

3 DESIRED_HEADING pHelmIvP 1728.72 (28) 114

4 DESIRED_HEADING pHelmIvP 1733.99 (21) 115

5 DESIRED_HEADING pHelmIvP 1738.75 (19) 114

6 DESIRED_HEADING pHelmIvP 1740.00 (5) 115

7 DESIRED_HEADING pHelmIvP 1740.25 (1) 148

8 DESIRED_HEADING pHelmIvP 1740.50 (1) 149

9 DESIRED_HEADING pHelmIvP 1740.75 (1) 150

10 DESIRED_HEADING pHelmIvP 1741.00 (1) 152

11 DESIRED_HEADING pHelmIvP 1741.25 (1) 153

12 DESIRED_HEADING pHelmIvP 1741.50 (1) 154

13 DESIRED_HEADING pHelmIvP 1741.75 (1) 156

14 DESIRED_HEADING pHelmIvP 1742.00 (1) 157

15 DESIRED_HEADING pHelmIvP 1742.25 (1) 158

16 DESIRED_HEADING pHelmIvP 1742.50 (1) 160

17 DESIRED_HEADING pHelmIvP 1742.75 (1) 161

18 DESIRED_HEADING pHelmIvP 1743.01 (1) 163

48

19 DESIRED_HEADING pHelmIvP 1743.26 (1) 164

20 DESIRED_HEADING pHelmIvP 1743.51 (1) 167

21 DESIRED_HEADING pHelmIvP 1743.76 (1) 169

The output structure in the history mode is the same as in the scoping mode in terms of what
data is in the columns and header lines. Each line however is dedicated to the same variable and
shows the progression of values through time. To save screen real estate, successive mail received
for with identical source and value will consolidated on one line, and the number in parentheses is
merely incremented for each such identical mail. For example, on line 5 in Listing 9, the value of
DESIRED HEADING has remained the same for 19 consecutives posts to the MOOSDB.

The output in the history mode may be adjusted in a few ways. The number of lines of history
may be increased or descreased by hitting the ’>’ or ’<’ keys respectively. A maximum of 100 and
minimum of 5 lines is allowed. To increase the available real estate on each line, the variable name
column my be supressed by hitting the ’j’ key and restored with the ’J’ key.

4.4 Configuration File Parameters for uXMS

Configuraton of uXMS may be done from a configuration file (.moos file), from the command line, or
both. Generally the parameter settings given on the command line override the settings from the
.moos file, but using the configuration file is a convenient way of ensuring certain settings are in
effect on repeated command line invocations. The following is short description of the parameters:

Listing 4.10: Configuration Parameters for uXMS.

COLORMAP: Associates a color for the line of text reporting the given variable.
CONTENT MODE: Determines if the content mode is scoping or history.
DISPLAY ALL: If true, all variables are reported in the scoping content mode.

DISPLAY COMMUNITY: If true, the Community column is rendered.
DISPLAY EMPTY STRINGS: if false, variables with an empty-string value are not reported.

DISPLAY SOURCE: If true, the Source column is rendered.
DISPLAY TIME: If true, the Time column is rendered.

DISPLAY VIRGINS: If false, variables never written to the MOOSDB are not reported.
HISTORY VAR: Names the MOOS variable reported in the history mode.
REFRESH MODE: Determines when new reports are written to the screen.

VAR: A comma-separated list of variables to scope on in the scoping mode.

A design goal of uXMS is to allow the user to customize just the right window into the MOOSDB
to facilitate debugging and analysis. Most of the the configurable options deal with content and
layout of the information in the terminal window, but color can also be used to faciliate monitoring
one or more variables. The parameter

COLORMAP = <variable/app>, <color>

49

is used to request that a line the report containing the given variable or produced by the given
MOOS application (source) is rendered in the given color. The choices for color are limited to red,
green, blue, cyan, and magenta.

The content mode determines what information is generated in each report to the terminal
output (Section 4.3). This mode is set with the following parameter:

CONTENT_MODE = <mode-type> // mode-type is set to either "scoping" or "history"

The default content mode is the scoping mode, but may alternately be set to the history mode.
These were described in Sections 4.3.1 and 4.3.2.

The uXMS report has three columns of data that may be optionally turned off to conserve real
estate, the Time, Source and Community columns as shown in Listing 8. By default they are
turned off, and they may be toggled on and off by the user at run time. Their initial state may be
configured with the following three parameters:

DISPLAY_COMMUNITY = <Boolean>

DISPLAY_SOURCE = <Boolean>

DISPLAY_TIME = <Boolean>

The report content may be further modified to mask out lines containing variables that have
never been written to, and variables with an empty-string value. This is done with the following
configuration lines:

DISPLAY_VIRGINS = <Boolean>

DISPLAY_EMPTY_STRINGS = <Boolean>

The variable reported in the history mode is set with the below configuration line:

HISTORY_VAR = <MOOS-variable>

The history report only allows for one variable, and multiple instances of the above line will simply
honor the last line provided. The variables reported on in the scoping mode, the scope list, are
declared with configuration lines of the form:

VAR = <MOOS-variable>, <MOOS-variable>, ...

Multiple such lines, each perhaps with multiple variables, are accommodated. The scope list may
be augmented on the command line by simply naming variables as command line arguments. The
scope list provided on the command line may replace the list given in the configuration file if the
--clean command line option is also invoked.

The refresh mode determines when new reports are generated to the screen, as discussed in
Section 4.2. It is set with the below configuration line:

REFRESH_MODE = <mode> // Valid modes are "paused", "streaming", "events"

50

The initial refresh mode is set to "events" by default. The refresh mode set in the configuration
file may be overridden from the command line (Section 4.5), and toggled by the user at run time
(Section 4.6).

An example configuration is given in Listing 11.

Listing 11 - An example uXMS configuration block.

1 //--

2 // uXMS configuration block

3

4 ProcessConfig = uXMS

5 {

6 AppTick = 5

7 CommsTick = 5

8

9 // Navigation information (Or use --group=nav on the command line)

10 VAR = NAV_X, NAV_Y, NAV_HEADING, NAV_SPEED, NAV_DEPTH

11

12 // Helm output information (Or use --group=helm on the command line)

13 VAR = DESIRED_HEADING, DESIRED_SPEED, DESIRED_DEPTH

14

15 // More helm information (Or use --group=helm on the command line)

16 VAR = BHV_WARNING, BHV_ERROR, MOOS_MANUAL_OVERIDE

17 VAR = HELM_IPF_COUNT, HELM_ACTIVE_BHV, HELM_NONIDLE_BHV

18 VAR = DEPLOY, RETURN, STATION_KEEP

19

20 // PID output information (or use --group=pid on the command line)

21 VAR = DESIRED_RUDDER, DESIRED_THRUST, DESIRED_ELEVATOR

22

23 // uProcessWatch output (or use --group=proc on the command line)

24 VAR = PROC_WATCH_SUMMARY, PROC_WATCH_EVENT

25

26 // Display parameters - Values shown are defaults

26 REFRESH_MODE = events

27 DISPLAY_VIRGINS = true // false if --mask=virgin on cmd-line

28 DISPLAY_EMPTY_STRINGS = true // false if --mask=empty on cmd-line

29 DISPLAY_SOURCE = false // true if --show=source on cmd-line

30 DISPLAY_TIME = false // true if --show=time on cmd-line

31 DISPLAY_COMMUNITY = false // true if --show=community cmd-line

32

33 // Enable History Scoping by specifying a history variable

34 HISTORY_VAR = VIEW_POINT

35 }

4.5 Command Line Usage of uXMS

Many of the parameters available for setting the .moos file configuration block can also be affected
from the command line. The command line configurations always trump any configurations in the
.moos file. As with the uPokeDB application, the server host and server port information can be
specified from the command line too to make it easy to pop open a uXMS window from anywhere
within the directory tree without needing to know where the .moos file resides. The basic command

51

line usage for the uXMS application is the following:

Listing 12 - Command line usage for the uXMS tool.

0 > uXMS -h

1 Usage: uXMS [file.moos] [OPTIONS]

2

3 Options:

4 --all,-a Show ALL MOOS variables in the MOOSDB

5 --clean,-c Ignore scope variables in file.moos

6 --colormap=VAR,color

7 Display all entries where the variable, source,

8 or community contains VAR as substring. Color

9 may be blue, red, magenta, cyan, or green.

10 --colorany=VAR,VAR,...,VAR

11 Display all entries where the variable, source,

12 or community contains VAR as substring. Color

13 chosen automatically from unused colors.

14 --group=[helm,pid,proc,nav]

15 helm: Auto-subscribe for IvPHelm variables

16 pid: Auto-subscribe for PID (DESIRED_*) vars

17 proc: Auto-subscribe for uProcessWatch vars

18 nav: Auto-subscribe for NAV_* variables

19 --history=variable

20 Allow history-scoping on variable

21 --mask=[virgin,empty]

22 virgin: Don’t display virgin variables

23 empty: Don’t display empty strings

24 --mode=[paused,events,STREAMING]

25 Determine display mode. Paused: scope updated

26 only on user request. Events: data updated only

27 on change to a scoped variable. Streaming: data

28 updated continuously on each app-tick.

29 --server_host=value

30 Connect to MOOSDB at IP=value rather than

31 getting the info from file.moos.

32 --server_port=value

33 Connect to MOOSDB at port=value rather than

34 getting the info from file.moos.

35 --show=[source,time,community,aux]

36 Turn on data display in the named column,

37 source, time, or community. All off by default

38 Enabling aux shows the auxilliary source in

39 the source column.

40 --src=pSrc,pSrc,...,pSrc

41 Scope only on vars posted by the given list of

42 MOOS processes, i.e., sources

43 --trunc=value [10,1000]

44 Truncate the output in the data column.

45

The -nav, -pid, -helm, and -proc switches are convenient aliases for common groups of variables.
See Listing 11. Using the --clean switch will cause uXMS to ignore the variables specified in the .moos

file configuration block and only scope on the variables specified on the command line (otherwise
the union of the two sets of variables is used). Typically this is done when a user wants to quickly

52

scope on a couple variables and doesn’t want to be distracted with the longer list specified in the
.moos file. Arguments on the command line other than the ones described above are treated as
variable requests. Thus the following command line entry:

> uXMS foo.moos --group=proc --clean DB_CLIENTS

would result in a scope list of PROC WATCH SUMMARY, PROC WATCH EVENT and DB CLIENTS, regardless of
what may have been specified in the uXMS configuration block of foo.moos.

The specification of a .moos file on the command line is optional. The only two pieces of
information uXMS needs from this file are (a) the server host IP address, and (b) the server port

number of the running MOOSDB to scope. These values can instead be provided on the command
line:

> uXMS DB_CLIENTS --server_host=18.38.2.158 --server_port=9000

If the server host or the server port are not provided on the command line, and a MOOS file is
also not provided, the user will be prompted for the two values. Since the most common scenario
is when the MOOSDB is running on the local machine (“localhost”) with port 9000, these are the
default values and the user can simply hit the return key.

> uXMS DEPLOY DB_CLIENTS // The latter two args are MOOS variables to scope

> Enter Server: [localhost]

> The server is set to "localhost"

> Enter Port: [9000] 9123

> The port is set to "9123"

4.6 Console Interaction with uXMS at Run Time

When uXMS is launched, a separate thread is spawned to accept user input at the console window.
When first launched the entire scope list is printed to the console in a five column report. The first
column displays the variable name, and the last one displays the variable value as shown in Listing
13. Each time the report is written the counter at the end of line 2 is incremented. The variable
type is indicated by the presence or lack of quotes around the value output. Quotes indicate a
string type as in line 3, and lack of quotes indicate a double. A variable value of n/a indicates the
variable has yet to be published to the MOOSDB by any process as in lines 8 and 11. Should a
variable actually have the value of n/a as a string, it would have quotes around it.

Listing 13 - The uXMS console output with -proc, -nav and -pid command line options.

1 VarName (S) (T) (C) VarValue (MODE = SCOPING:PAUSED)

2 ---------------- --- --- --- ----------- (1)

3 PROC_WATCH_SUMMARY "All Present"

4 NAV_X 10

5 NAV_Y -10

6 NAV_HEADING 180

7 NAV_SPEED 0

8 NAV_DEPTH n/a

9 DESIRED_RUDDER 0

10 DESIRED_THRUST 0

11 DESIRED_ELEVATOR n/a

53

By default at start-up, uXMS is in a paused mode and the three middle columns are un-expanded.
Listing 14 shows the console help menu which can be displayed at any time by typing ’h’. Displaying
the help menu automatically puts the program into a paused mode if it wasn’t already. A common
usage pattern to minimize bandwidth is to remain in paused mode and hit the space bar or ’u/U’
key to get a single updated report. This action also results in the replacement of the help menu
if it is currently displayed, with a new report. A streaming mode is entered by hitting the ’r/R’
key, and a report is generated once every iteration of uXMS, the frequency being determined by the
MOOS AppTick setting on line 6 in Listing 11. Variables the have never been written to in the
MOOSDB (“virgin variables”) have a VarValue field of “n/a”. Virgin variables can be suppressed
by hitting the ’v’ key, and by default are displayed. String variable that have an empty string value
can also be suppressed by hitting the ’e’ key and are also displayed by default.

Listing 14 - The help-menu on the uXMS console.

1 KeyStroke Function

2 --------- ---------------------------

3 s Suppress Source of variables

4 S Display Source of variables

5 t Suppress Time of variables

6 T Display Time of variables

7 c Suppress Community of variables

8 C Display Community of variables

9 v Suppress virgin variables

10 V Display virgin variables

11 n Suppress null/empty strings

12 N Display null/empty strings

13 w Show Variable History if enabled

14 W Hide Variable History

15 z Toggle the Variable History mode

16 j Truncate Hist Variable in Hist Report

17 J Show Hist Variable in Hist Report

18 > or < Show More or Less Variable History

19 / Begin entering a filter string

20 ? Clear current filter

21 a Revert to variables shown at startup

22 A Display all variables in the database

23 u/U/SPC Update infor once-now, then Pause

24 p/P Pause information refresh

25 r/R Resume information refresh

26 e/E Information refresh is event-driven

27 h/H Show this Help msg - ’R’ to resume

The three middle columns can be expanded as shown in Listing 15. Column 2 can be activated by
typing ’S’ and deactivated by ’s’ and shows the variable source, i.e., the latest process connected to
the MOOSDB to post a value to that variable. The third column shows the time (since MOOSDB
start-up) of the last write to that variable. uXMS subscribes to the variable DB UPTIME and reads this
mail first and assigns this time stamp to all other incoming mail in that iteration. Time display
is activated with ’T’ and deactivated with ’t’. The fourth column shows the MOOS community
of the last variable posting. Unless an inter-MOOSDB communications process is running such
as pMOOSBridge or MOOSBlink, entries in this column will be the local community, set by the
parameter of the same name in global section of the MOOS file. Output in this column is activated

54

with ’C’ and deactivated with ’c’.

Listing 15 - An example uXMS console output with all fields expanded.

1 VarName (S)ource (T)ime (C)ommunity VarValue (MODE = SCOPING:PAUSED)

2 ---------------- ---------- ---------- ---------- ----------- (4)

3 PROC_WATCH_SUMMARY uProcessWatch 364.486 nyak200 "AWOL: pEchoVar"

4 NAV_X pEchoVar 365.512 nyak200 10

5 NAV_Y pEchoVar 365.512 nyak200 -10

6 NAV_HEADING pEchoVar 365.512 nyak200 180

7 NAV_SPEED pEchoVar 365.512 nyak200 0

8 DESIRED_RUDDER pMarinePID 365.512 nyak200 0

9 DESIRED_THRUST pMarinePID 365.512 nyak200 0

Variables that have yet to be written, as lines 8 and 11 in Listing 13, can be suppressed by the
hitting ’v’ key, and restored by the ’V’ key. In the paused mode, each change in report format has
the side-effect of requesting a new report reflecting the desired change in format. The decision was
made to use the upper and lower case keys for toggling format features rather simply using the the
’s’ key for toggling off and on, which was the case on the first version of uXMS. In high latency, low
bandwidth use, toggling with one key can be leave the user wondering which state is active.

4.7 Running uXMS Locally or Remotely

The choice of uXMS as a scoping tool was designed in part to support situations where the target
MOOSDB is running on a vehicle with low bandwidth communications, such as an AUV sitting on
the surface with only a weak RF link back to the ship. There are two distinct ways one can run
uXMS in this situation and its worth noting the difference. One way is to run uXMS locally on one’s
own machine, and connect remotely to the MOOSDB on the vehicle. The other way is to log onto
the vehicle through a terminal, run uXMS remotely, but in effect connecting locally to the MOOSDB
also running on the vehicle.

The difference is seen when considering that uXMS is running three separate threads. One accepts
mail delivered by the MOOSDB, one executes the iterate loop of uXMS where reports are written
to the terminal, and one monitors the keyboard for user input. If running uXMS locally, connected
remotely, even though the user may be in paused mode with no keyboard interaction or reports
written to the terminal, the first thread still may have a communication requirement perhaps larger
than the bandwidth will support. If running remotely, connected locally, the first thread is easily
supported since the mail is communicated locally. Bandwidth is consumed in the second two
threads, but the user controls this by being in paused mode and requesting new reports judiciously.

4.8 Connecting multiple uXMS processes to a single MOOSDB

Multiple versions of uXMS may be connected to a single MOOSDB. This is to simultaneously allow
several people a scope onto a vehicle. Although MOOS disallows two processes of the same name
to connect to MOOSDB, uXMS generates a random number between 0-999 and adds it as a suffix to
the uXMS name when connected. Thus it may show up as something like uXMS 871 if you scope on
the variable DB CLIENTS. In the unlikely event of a name collision, the user can just try again.

55

4.9 Publications and Subscriptions for uXMS

Variables published by the uXMS application

• None

Variables subscribed for by the uXMS application

• USER-DEFINED: The variables subscribed for are those on the scope list described in Section
4.4.

56

5 uTermCommand: Poking the MOOSDB with Pre-Set Values

5.1 Brief Overview

The uTermCommand application is a terminal based tool for poking the MOOS database with
pre-defined variable-value pairs. This can be used for command and control for example by setting
variables in the MOOSDB that affect the behavior conditions running in the helm. One other
way to do this, perhaps known to users of the iRemote process distributed with MOOS, is to use
the Custom Keys feature by binding variable-value pairs to the numeric keys [0-9]. The primary
drawback is the limitation to ten mappings, but the uTermCommand process also allows more
meaningful easy-to-remember cues than the numeric keys.

5.2 Configuration Parameters for uTermCommand

The variable-value mappings are set in the uTermCommand configuration block of the MOOS file.
Each mapping requires one line of the form:

CMD = cue --> variable --> value

The cue and variable fields are case sensitive, and the value field may also be case sensitive depending
on how the subscribing MOOS process(es) handle the value. An example configuration is given in
Listing 16.

Listing 16 - An example uTermCommand configuration block.

1 //--

2 // uTermCommand configuration block

4

5 ProcessConfig = uTermCommand

6 {

7 AppTick = 2

8 CommsTick = 2

9

10 CMD = deploy_true --> DEPLOY --> true

11 CMD = deploy_false --> DEPLOY --> false

12 CMD = return_true --> RETURN --> true

13 CMD = return_false --> RETURN --> false

14 CMD = station_true --> STATION_KEEP --> true

15 CMD = station_false --> STATION_KEEP --> false

16 }

Recall the type of a MOOS variable is either a string or double. If a variable has yet to be posted
to the MOOSDB, it accepts whatever type is first written, otherwise postings of the wrong type
are ignored. In the uTermCommand configuration lines such as 10-15 in Listing 16, the variable
type is interpreted to be a string if quotes surround the entry in the value field. If not, the value is
inspected as to whether it represents a numerical value. If so, it is posted as a double. Otherwise it
is posted as a string. Thus true and “true” are the same type (no such thing as a Boolean type),
25 is a double and “25” is a string.

57

5.3 Console Interaction with uTermCommand at Run Time

When uTermCommand is launched, a separate thread is spawned to accept user input at the console
window. When first launched the entire list of cues and the associated variable-value pairs are listed.
Listing 17 shows what the console output would look like given the configuration parameters of
Listing 16. Note that even though quotes were not necessary in the configuration file to clarify
that true was to be posted as a string, the quotes are always placed around string values in the
terminal output.

Listing 17 - Console output at start-up.

1 Cue VarName VarValue

2 ----------- --------------- --------------

3 deploy_true DEPLOY "true"

4 deploy_false DEPLOY "false"

5 return_true RETURN "true"

6 return_false RETURN "false"

7 station_true STATION_KEEP "true"

8 station_false STATION_KEEP "false"

9

10 >

A prompt is shown on the last line where user key strokes will be displayed. As the user types
characters, the list of choices is narrowed based on matches to the cue. After typing a single ’r’
character, only the return true and return false cues match and the list of choices shown are
reduced as shown in Listing 18. At this point, hitting the TAB key will complete the input field
out to return , much like tab-completion works at a Linux shell prompt.

Listing 18 - Console output after typing a single character ’r’.

1 Cue VarName VarValue

2 ----------- --------------- --------------

3 return_true RETURN "true"

4 return_false RETURN "false"

5

6 > r

When the user has typed out a valid cue that matches a single entry, only the one line is displayed,
with the tag <-- SELECT at the end of the line, as shown in Listing 19.

Listing 19 - Console output when a single command is identified.

1 Cue VarName VarValue

2 ----------- --------------- --------------

3 return_true RETURN "true" <-- SELECT

4

5 > return_true

At this point hitting the ENTER key will execute the posting of that variable-value pair to the
MOOSDB, and the console output will return to its original start-up output. A local history is
augmented after each entry is made, and the up- and down-arrow keys can be used to select and
re-execute postings on subsequent iterations.

58

5.4 More on uTermCommand for In-Field Command and Control

The uTermCommand utility can be used in conjunction with a inter-MOOSDB communications
utility such as pMOOSBridge or MOOSBlink to effectively control a set of vehicles in the field
running the IvP Helm. The user uses uTermCommand to alter a key variable in the local MOOSDB,
and this variable gets mapped to one or more vehicles at different IP addresses in the network,
sometimes changing variables names in the mapping. The helm is running on the vehicles with one
or more behaviors composed with a condition affected by the newly changed variable in its local
MOOSDB. The idea is depicted Figure 16.

Figure 16: A common usage of the uTermCommand application for command and control.

In the example below in Listing 20, uTermCommand is used to control a pair of vehicles in one of
two ways - to deploy a vehicle on a mission, or to recall it to a return point. The configuration block
contains three groups. The first group, lines 10-13, are for affecting commands to both vehicles
at once, and the second two groups in lines 15-18 and lines 20-23 are for affecting commands to a
particular vehicle.

Listing 20 - An example uTermCommand configuration block.

1 //--

2 // uTermCommand configuration block

4

5 ProcessConfig = uTermCommand

6 {

7 AppTick = 2

8 CommsTick = 2

9

10 CMD = all_deploy_true --> DEPLOY_ALL --> true

11 CMD = all_deploy_false --> DEPLOY_ALL --> false

12 CMD = all_return_true --> RETURN_ALL --> true

59

13 CMD = all_return_false --> RETURN_ALL --> false

14

15 CMD = 200_deploy_true --> DEPLOY_200 --> true

16 CMD = 200_deploy_false --> DEPLOY_200 --> false

17 CMD = 200_return_true --> RETURN_200 --> true

18 CMD = 200_return_false --> RETURN_200 --> false

19

20 CMD = 201_deploy_true --> DEPLOY_201 --> true

21 CMD = 201_deploy_false --> DEPLOY_201 --> false

22 CMD = 201_return_true --> RETURN_201 --> true

23 CMD = 201_return_false --> RETURN_201 --> false

24 }

The variable-value postings made by uTermCommand are made in the local MOOSDB and
need to be communicated out to the vehicles to have a command and control effect. A few tool
exist for this depending on the communications environment (wifi-802.11, radio-frequency, acoustic
underwater communications, or local network in simulation mode, etc.). The configuration blocks
for two tools, pMOOSBridge and MOOSBlink are shown in Listing 21. Note that each has a way
of communicating with several vehicles at once with one variable change - lines 8-9 in MOOSBlink
and lines 22-25 in pMOOSBridge. In this way the uTermCommand user can deploy or recall all
vehicles with one command. Communication with a single vehicle is set up with lines 11-14 and
lines 27-30.

Listing 21 - An example MOOSBlink and pMOOSBridge configuration block for implementing sim-
ple command and control with two vehicles.

1 //--

2 // pMOOSBlink config block

3

4 ProcessConfig = MOOSBlink

5 {

6 BroadcastAddr = 192.168.1.255

7

8 Share = global, DEPLOY_ALL, DEPLOY, 1

9 Share = global, RETURN_ALL, RETURN, 1

10

11 Share = nyak200, DEPLOY_200, DEPLOY, 1

12 Share = nyak201, DEPLOY_201, DEPLOY, 1

13 Share = nyak200, RETURN_200, RETURN, 1

14 Share = nyak201, RETURN_201, RETURN, 1

15 }

16

17 //--

18 // pMOOSBridge config block

19

20 ProcessConfig = pMOOSBridge

21 {

22 SHARE = [DEPLOY_ALL] -> nyak200 @ 192.168.0.200:9000 [DEPLOY]

23 SHARE = [DEPLOY_ALL] -> nyak201 @ 192.168.0.201:9000 [DEPLOY]

24 SHARE = [RETURN_ALL] -> nyak200 @ 192.168.0.200:9000 [RETURN]

25 SHARE = [RETURN_ALL] -> nyak201 @ 192.168.0.201:9000 [RETURN]

26

27 SHARE = [DEPLOY_200] -> nyak200 @ 192.168.0.200:9000 [DEPLOY]

28 SHARE = [DEPLOY_201] -> nyak201 @ 192.168.0.201:9000 [DEPLOY]

60

29 SHARE = [RETURN_200] -> nyak200 @ 192.168.0.200:9000 [RETURN]

30 SHARE = [RETURN_201] -> nyak201 @ 192.168.0.201:9000 [RETURN]

31 }

The last piece of the command and control process started with uTermCommand is implemented
on the vehicle within the autonomy module, pHelmIvP. One may configure the helm behaviors to all
have as a precondition DEPLOY=true and also have a way-point behavior configured to a convenient
return point with the precondition RETURN=true.

5.5 Connecting uTermCommand to the MOOSDB Under an Alias

A convention of MOOS is that each application connected to the MOOSDB must register with a
unique name. Typically the name used by a process to regiister with the MOOSDB is the process
name, e.g., uTermCommand. One may want to run multiple instances of uTermCommand all connected to
the same MOOSDB. To support this, an optional command line argument may be provided when
launching uTermCommand:

> uTermCommand file.moos --alias=uTermCommandAlpha

The command line argument may also be invoked from within pAntler to launch multiple uTermCommand
instances simultaneously.

5.6 Publications and Subscriptions for uTermCommand

5.6.1 Variables Published by the uTermCommand Application

• USER-DEFINED: The only variables published are those that are poked. These variables are
specified in the MOOS configuration block as described in Section 5.2.

5.6.2 Variables Subscribed for by the uTermCommand Application

• None

61

6 pEchoVar: Re-publishing Variables Under a Different Name

The pEchoVar application is a lightweight process that runs without any user interaction for “echo-
ing” the posting of specified variable-value pairs with a follow-on posting having different variable
name. For example the posting of FOO = 5.5 could be echoed such that BAR = 5.5 immediately
follows the first posting. The motivation for developing this tool was to mimic the capability of
pNav (see the MOOS website) for passing through sensor values such as GPS X to become NAV X.
More on this in Section 6.3.

6.1 Overview of the pEchoVar Interface and Configuration Options

The pEchoVar application may be configured with a configuration block within a .moos file. Its
interface is defined by its publications and subscriptions for MOOS variables consumed and gener-
ated by other MOOS applications. An overview of the set of configuration options and interface is
provided in this section.

6.1.1 Brief Summary of the pEchoVar Configuration Parameters

The following parameters are defined for pEchoVar. A more detailed description is provided in other
parts of this section. Parameters having default values are indicated in parentheses below.

ECHO: A mapping from one MOOS variable to another constituting an echo.
FLIP: A description of how components from one variable are re-posted under an-

other MOOS variable.
CONDITION: A logic condition that must be met or all echo and flip publications are held.

HOLD MESSAGES: If true, messages are held when conditions are not met for later processing
when logic conditions are indeed met (true).

6.1.2 MOOS Variables Posted by pEchoVar

The primary output of pEchoVar to the MOOSDB is the set of configured postings from the echo
and flip mappings. One other variable is published on each iteration:

PEV ITER: The iteration counter for the pEchoVar Iterate() loop.
<user-defined>: Any MOOS variable specified in either the ECHO or FLIP config parameters.

6.1.3 MOOS Variables Subscribed for by pEchoVar

The pEchoVar application will subscribe for any MOOS variables found in the antecedent of either
the echo or flip mappings. It will also subscribe for any MOOS variable found in any of its logic
conditions.

6.2 Basic Usage of the pEchoVar Utility

Configuring pEchoVar minimally involves the specification of one or more echo or flip mapping
events. It may also optionally involve specifying one or more logic conditions that must be met
before mapping events are posted.

62

6.2.1 Configuring Echo Mapping Events

An echo event mapping maps one MOOS variable to another. Each mapping requires one line of
the form:

Echo = <source_variable> -> <target_variable>

The <source variable> and <target variable> components are case sensitive since they are MOOS
variables. A source variable can be echoed to more than one target variable. If the set of lines
forms a cycle, this will be detected and pEchoVar will quit with an error message indicating the
cycle detection. It will also write this error message in the .ylog file if the pLogger logging tool is
running. An example configuration is given in Listing 22.

Listing 22 - An example pEchoVar configuration block.

1 //--

2 // pEchoVar configuration block

3

4 ProcessConfig = pEchoVar

5 {

6 AppTick = 20

7 CommsTick = 20

8

9 Echo = GPS_X -> NAV_X

10 Echo = GPS_Y -> NAV_Y

11 Echo = COMPASS_HEADING -> NAV_HEADING

12 Echo = GPS_SPEED -> NAV_SPEED

13 }

6.2.2 Configuring Flip Mapping Events

The pEchoVar application can be used to “flip” a variable rather then doing a simple echo. A flipped
variable, like an echoed variable, is one that is republished under a different name, but a flipped
variable parses the contents of a string comprised of a series of ’=’-separated pairs, and republishes
a portion of the series under the new variable name. For example, the following string,

ALPHA = "xpos=23, ypos=-49, depth=20, age=19.3, certainty=1"

may be flipped to publish the below new string, with the fields xpos, ypos, and depth replaced with
x, y, vehicle depth respectively.

BRAVO = "x=23, y=-49, vehicle_depth=20"

The above “flip relationship”, and each such relationship, is configured with the following form:

FLIP:<key> = source_variable = <variable>

FLIP:<key> = dest_variable = <variable>

FLIP:<key> = source_separator = <separator>

FLIP:<key> = dest_separator = <separator>

FLIP:<key> = filter = <variable>=<value>

FLIP:<key> = <old-field> -> <new-field>

FLIP:<key> = <old-field> -> <new-field>

63

The relationship is distinguished with a <key>, and several components. The source variable

and dest variable components are mandatory and must be different. The source separator and
dest separator components are optional with default values being the string ",". Fields in the
source variable will only be included in the destination variable if they are specified in a component
mapping <old-vield> -> <new-field>. The example configuration in Listing 23 implements the
above described example flip mapping. In this case only postings that satisfy the further filter,
certainty=1, will be posted.

Listing 23 - An example pEchoVar configuration block with flip mappings.

1 //--

2 // pEchoVar configuration block

3

4 ProcessConfig = pEchoVar

5 {

6 AppTick = 20

7 CommsTick = 20

8

9 FLIP:1 = source_variable = ALPHA

10 FLIP:1 = dest_variable = BRAVO

11 FLIP:1 = source_separator = ,

12 FLIP:1 = dest_separator = ,

13 FLIP:1 = filter = certainty=1

14 FLIP:1 = ypos -> y

15 FLIP:1 = xpos -> x

16 }

Some caution should be noted with flip mappings - the current implementation does not check for
loops, as is done with echo mappings.

6.2.3 Applying Conditions to the Echo and Flip Operation

The execution of the mappings configured in pEchoVar may be configured to depend on one or more
logic conditions. If conditions are specified in the configuration block, all specified logic conditions
must be met or else the posting of echo and flip mappings will be suspended. The logic conditions
are configured as follows:

CONDITION = <logic-expression>

The <logic-expression> syntax is described in Appendix A, and may involve the simple comparison
of MOOS variables to specified literal values, or the comparison of MOOS variables to one another.

If conditions are specified, pEchoVar will automatically subscribe to all MOOS variables used
in the condition expressions. If the conditions are not met, all incoming mail messages that would
otherwise result in an echo of flip posting, are held. When or if the conditions are met at some
point later, those mail messages are processed in the order received and echo and flip mappings
may be posted en masse. However, if several mail messages for a given MOOS variable are received
and stored while conditions are unmet, only the latest received mail message for that variable will
be processed. As an example, consider pEchoVar configured with the below two lines:

64

ECHO = FOO -> BAR
CONDITION = DEGREES <= 32

If the condition is not met for some period of time, and the following mail were received during this
interval: FOO="apples", FOO="pears", FOO="grapes", followed by DEGREES=30, then pEchoVar would
immediately post BAR="grapes" immediately on the very iteration that the DEGREES=30 message was
received. Note that BAR="apples" and BAR="pears" would never be posted.

The user may alternatively configure pEchoVar to not hold incoming mail messages when or if
it is in a state where its logic conditions are not met. This can be done by setting

HOLD_MESSAGES = false // The default is true

When configured this way, upon meeting the specified logic conditions, pEchoVar will begin process-
ing echo and flip mappings when or if new mail messages are received relevant to the mappings.
In the above example, once DEGREES=30 is received by pEchoVar, nothing would be posted until new
incoming mail on the variable FOO is received (not even BAR="grapes").

6.3 Configuring for Vehicle Simulation with pEchoVar

When in simulation mode with uSimMarine, the navigation information is generated by the sim-
ulator and not the sensors such as GPS or compass as indicated in lines 9-12 in Listing 22. The
simulator instead produces USM * values which can be echoed as NAV * values as shown in Listing
24.

Listing 24 - An example pEchoVar configuration block during simulation.

1 //--

2 // pEchoVar configuration block (for simulation mode)

3

4 ProcessConfig = pEchoVar

5 {

6 AppTick = 20

7 CommsTick = 20

8

9 Echo = USM_X -> NAV_X

10 Echo = USM_Y -> NAV_Y

11 Echo = USM_HEADING -> NAV_HEADING

12 Echo = USM_SPEED -> NAV_SPEED

13 }

65

7 uProcessWatch: Monitoring Process Connections to the MOOSDB

7.1 Brief Overview

The uProcessWatch application is process for monitoring the presence of other MOOS processes,
identified through the uProcessWatch configuration, to be present and connected to the MOOSDB
under normal healthy operation. It does output a health report to the terminal, but typically is
running without any terminal or GUI being display. The health report is summarized in two MOOS
variables - PROC WATCH SUMMARY and PROC WATCH EVENT. The former is either set to “All Present” as
in line 3 of Listing 13, or is composed of a comma-separated list of missing processes identified
as being AWOL (absent without leave), as shown in line 3 of Listing 15. The PROC WATCH EVENT

variable lists the last event affecting the summary, such as the re-emergence of an AWOL process
or the disconnection of a process and thus new member on the AWOL list.

7.2 Configuration Parameters for uProcessWatch

Configuration of uProcessWatch is done by declaring a watch list in the uProcessWatch configura-
tion block of the MOOS file. Each process to be monitored is identified on a separate line of the
form:

WATCH = process_name[*]

The process name field is case sensitive. The asterisk is optional and affects the strictness in pattern
matching the process to the list of known healthy processes. Duplicates, should they be erroneously
listed twice, are simply ignored. An example configuration is given in Listing 25.

Listing 25 - An example uProcessWatch configuration block.

1 //--

2 // uProcessWatch configuration block

3

4 ProcessConfig = uProcessWatch

5 {

6 AppTick = 2

7 CommsTick = 2

8

9 // Declare the watch-list below

10 WATCH = pHelmIvP

11 WATCH = uSimMarine

12 WATCH = pEchoVar

13 WATCH = pLogger

14 WATCH = pMarinePID

15 WATCH = pNodeReporter

16 WATCH = pMOOSBridge*

17 }

Monitoring the state of items on the watch list is done by examining the contents of the variable
DB CLIENTS which is a comma separated list of clients connected to the MOOSDB. A strict pattern
match is done between an item on the watch list and members of DB CLIENTS. The optional asterisk
after the process name indicates that a looser pattern match is performed. This is to accommodate
MOOS processes that may have their names chosen at run time, such as uXMS, or may have suffixes

66

related to their community name such as pMOOSBridge. The WATCH = pMOOSBridge* declaration
on line 16 in Listing 25 would not report this process as AWOL even if it is connected to the
MOOSDB as pMOOSBridge alpha.

7.3 Publications and Subscriptions for uProcessWatch

Variables published by the uProcessWatch application

• PROC WATCH SUMMARY: A string set either to “All Present” as in line 3 of Listing 13, or composed
of a comma-separated list of missing processes identified as being AWOL (absent without
leave), as shown in line 3 of Listing 15.

• PROC WATCH EVENT: A string containing the last event affecting the summary, such as the re-
emergence of an AWOL process or the disconnection of a process and thus new member on
the AWOL list.

Variables subscribed for by the uProcessWatch application

• DB CLIENTS: Published by the MOOSDB, this variable contains a comma-separated list of
processes currently connected to the MOOSDB. This list is what uProcessWatch scans and
checks for missing processes.

67

8 uPokeDB: Poking the MOOSDB from the Command Line

8.1 Brief Overview

The uPokeDB application is a lightweight process that runs without any user interaction for writing
to (poking) a running MOOSDB with one or more variable-value pairs. It is run from a console window
with no GUI. It accepts the variable-value pairs from the command line, connects to the MOOSDB,
displays the variable values prior to poking, performs the poke, displays the variable values after
poking, and then disconnects from the MOOSDB and terminates. It also accepts a .moos file as a
command line argument to grab the IP and port information to find the MOOSDB for connecting.
Other than that, it does not read a uPokeDB configuration block from the .moos file.

Other Methods for Poking a MOOSDB

There are few other MOOS applications capable of poking a MOOSDB. The uMS (MOOS Scope)
is an application for both monitoring and poking a MOOSDB. It is substantially more feature
rich than uPokeDB, and depends on the FLTK library. The iRemote application can poke the
MOOSDB by using the CustomKey parameter, but is limited to the free unmapped keyboard keys,
and is good when used with some planning ahead. The latest versions of uMS and iRemote are
maintained on the Oxford MOOS website. The uTermCommand application (Section 5) is a tool
primarily for poking the MOOSDB with a pre-defined list of variable-value pairs configured in its
.moos file configuration block. The user initiates each poke by entering a keyword at a terminal
window. Unlike iRemote it associates a variable-value pair with a key word rather than a keyboard
key. The uTimerScript application (Section 9) is another tool for poking the MOOSDB with
a pre-defined list of variable-value pairs configured in its .moos file configuration block. Unlike
uTermCommand, uTimerScript will poke the MOOSDB without requiring further user action, but
instead executes its pokes based on a timed script. The uMOOSPoke application, written by Matt
Grund, is similar in intent to uPokeDB in that it accepts a command line variable-value pair. uPokeDB

has a few additional features described below, namely multiple command-line pokes, accepting a
.moos file on the command-line, and a MOOSDB summary prior and after the poke.

8.2 Command-line Arguments of uPokeDB

The command-line invocation of uPokeDB accepts two types of arguments - a .moos file, and one or
more variable-value pairs. The former is optional, and if left unspecified, will infer that the machine
and port number to find a running MOOSDB process is localhost and port 9000. The uPokeDB process
does not otherwise look for a uPokeDB configuration block in this file. The variable-value pairs are
delimited by the ’=’ character as in the following example:

uPokeDB alpha.moos FOO=bar TEMP=98.6 MOTTO="such is life" TEMP_STRING:=98.6

Since white-space characters on a command line delineate arguments, the use of double-quotes must
be used if one wants to refer to a string value with white-space as in the third variable-value pair
above. The value type in the variable-value pair is assumed to be a double if the value is numerical,
and assumed to be a string type otherwise. If one really wants to poke with a string type that
happens to be numerical, i.e., the string “98.6”, then the “:=” separator must be used as in the
last argument in the example above. If uPokeDB is invoked with a variable type different than that
already associated with a variable in the MOOSDB, the attempted poke simply has no effect.

68

8.3 MOOS Poke Macro Expansion

The uPokeDB utility supports macro expansion for timestamps. This may be used to generate a
proxy posting from another application that uses timestamps as part of it posting. The macro
for timestamps is @MOOSTIME. This will expand to the value returned by the MOOS function call
MOOSTime(). This function call is implemented to return UTC time. This following is an example:

$ uPokeDB file.moos FOOBAR=color=red,temp=blue,timestamp=@MOOSTIME

The above poke would result in a posting similar to:

FOOBAR = color=red,temp=blue,timestamp=10376674605.24

As with other pokes, if the macro is part of a posting of type double, the timestamp is treated as
a double. The posting

$ uPokeDB file.moos TIME_OF_START=@MOOSTIME

would result in the posting of type double for the variable TIME OF START, assuming it has been
posted previously as a different type.

8.4 Command Line Specification of the MOOSDB to be Poked

The specification of a MOOS file on the command line is optional. The only two pieces of infor-
mation uPokeDB needs from this file are (a) the server host IP address, and (b) the server port

number of the running MOOSDB to poke. These values can instead be provided on the command
line:

$ uPokeDB FOO=bar server_host=18.38.2.158 server_port=9000

If the server host or the server port are not provided on the command line, and a MOOS file is
also not provided, the user will be prompted for the two values. Since the most common scenario
is when the MOOSDB is running on the local machine (“localhost”) with port 9000, these are the
default values and the user can simply hit the return key.

$ uPokeDB FOO=bar // User launches with no info on server host or port

$ Enter Server: [localhost] // User accepts the default by just hitting Return key

$ The server is set to "localhost" // Server host is confirmed to be set to "localhost"

$ Enter Port: [9000] 9123 // User overrides the default 9000 port with 9123

$ The port is set to "9123" // Server port is confirmed to be set to "9123"

8.5 Session Output from uPokeDB

The output in Listing 26 shows an example session when a running MOOSDB is poked with the
following invocation:

uPokeDB alpha.moos DEPLOY=true RETURN=true

69

Lines 1-18 are standard output of a MOOS application that has successfully connected to a running
MOOSDB. Lines 20-24 indicate the value of the variables prior to being poked, along with their
source, i.e., the MOOS process responsible for publishing the current value to the MOOSDB, and
the time at which it was last written. The time is given in seconds elapsed since the MOOSDB was
started. Lines 26-30 show the new state of the poked variables in the MOOSDB after uPokeDB has
done its thing.

Listing 26 - An example uPokeDB session output.

1 **

2 * *

3 * This is MOOS Client *

4 * c. P Newman 2001 *

5 * *

6 **

7

8 ---------------MOOS CONNECT-----------------------

9 contacting MOOSDB localhost:9000 - try 00001

10 Contact Made

11 Handshaking as "uPokeDB"

12 Handshaking Complete

13 Invoking User OnConnect() callback...ok

14 --

15

16 uPokeDB AppTick @ 5.0 Hz

17 uPokeDB CommsTick @ 5 Hz

18 uPokeDB is Running

19

20 PRIOR to Poking the MOOSDB

21 VarName (S)ource (T)ime VarValue

22 ---------------- ---------- ---------- -------------

23 DEPLOY pHelmIvP 1.87 "false"

24 RETURN pHelmIvP 1.87 "false"

25

26 AFTER Poking the MOOSDB

27 VarName (S)ource (T)ime VarValue

28 ---------------- ---------- ---------- -------------

29 DEPLOY uPokeDB 8.48 "true"

30 RETURN uPokeDB 8.48 "true"

8.6 Publications and Subscriptions for uPokeDB

Variables published by the uPokeDB application

• USER-DEFINED: The only variables published are those that are poked. These variables are
provided on the command line. See Section 8.2.

Variables subscribed for by the uPokeDB application

• USER-DEFINED: Since uPokeDB provides two reports as described in the above Section 8.5, it
subscribes for the same variables it is asked to poke, so it can generate its before-and-after
reports.

70

9 The uTimerScript Utility: Scripting Events to the MOOSDB

The uTimerScript application allows the user to script a set of pre-configured pokes to a MOOSDB
with each entry in the script happening after a specified amount of elapsed time. The execution of
the script may be paused, or fast-forwarded a given amount of time, or forwarded to the next event
on the script by writing to a MOOS variable from which uTimerScript accepts such cues. Event
timestamps may be given as an exact point in time relative to the start of the script, or a range
in times with the exact time determined randomly at run-time. The variable value of an event
may also contain information generated randomly. The script may also be reset or repeated any
given number of times. In short, the uTimerScript application may be used to effectively simulate
the output of other MOOS applications when those applications are not available. We give a few
examples, including a simulated GPS unit and a crude simulation of wind gusts.

9.1 Overview of the uTimerScript Interface and Configuration Options

The uTimerScript application may be configured with a configuration block within a .moos file,
and from the command line. Its interface is defined by its publications and subscriptions for
MOOS variables consumed and generated by other MOOS applications. An overview of the set of
configuration options and interface is provided in this section.

9.1.1 Brief Summary of the uTimerScript Configuration Parameters

The following parameters are defined for uTimerScript. A more detailed description is provided in
other parts of this section. Parameters having default values indicate so in parentheses below.

CONDITION: A logic condition that must be met for the script to be un-paused.
DELAY RESET: Number of seconds added to each event time, on each script pass (0).
DELAY START: Number of seconds added to each event time, on first pass only (0).

EVENT: A description of a single event in the timer script.
FORWARD VAR: A MOOS variable for taking cues to forward time (UTS FORWARD).

PAUSED: A Boolean indicating whether the script is paused upon launch (false).
PAUSE VAR: A MOOS variable for receiving pause state cues (UTS PAUSE).
RAND VAR: A declaration of a random variable macro to be expanded in event values.
RESET MAX: The maximum amount of resets allowed ("nolimit").
RESET TIME: The time or condition when the script is reset ("none").
RESET VAR: A MOOS variable for receiving reset cues (UTS RESET).

SCRIPT ATOMIC: When true, a started script will complete if conditions suddenly fail (false).
SCRIPT NAME: Unique (hopefully) name given to this script ("unnamded").

SHUFFLE: If true, timestamps are recalculated on each reset of the script (true).
STATUS VAR: A MOOS variable for posting status summary (UTS STATUS).
TIME WARP: Rate at which time is accelerated, [0,∞], in executing the script (1).
UPON AWAKE: Reset or re-start the script upon conditions being met after failure ("n/a").

VERBOSE: If true, progress output is generated to the console (true).

71

9.1.2 MOOS Variables Posted by uTimerScript

The primary output of uTimerScript to the MOOSDB is the set of configured events, but one other
variable is published on each iteration:

UTS STATUS: A status string of script progress.

This variable will be published on each iteration if one of the following conditions is met: (a) two
seconds has passed since the previous status message posted, or (b) an event has been been posted,
or (c) the paused state has changed, or (d) the script has been reset, or (e) the state of script logic
conditions has changed. An example string:

UTS_STATUS = "name=RND_TEST, elapsed_time=2.00, posted=1, pending=4, paused=false,

conditions_ok=true, time_warp=3, start_delay=0, shuffle=false, upon_awake=reset, resets=0/4"

9.1.3 MOOS Variables Subscribed for by uTimerScript

The uTimerScript application will subscribe for the following four MOOS variables to provide
optional control over the flow of the script by the user or other MOOS processes:

UTS NEXT: When received with the value "next", the script will fast-forward in
time to the next event. Described in Section 9.3.3.

UTS RESET: When received with the value of either "true" or "reset", the timer
script will be reset. Described in Section 9.2.2.

UTS FORWARD: When received with a numerical value greater than zero, the script will
fast-forward by the indicated time. Described in Section 9.3.3.

UTS PAUSE: When received with the value of "true", "false", "toggle", the script
will change its pause state correspondingly. Described in Section 9.3.1.

In addition to the above MOOS variables, uTimerScript will subscribe for any variables involved
in logic conditions, described in Section 9.3.2.

9.1.4 Command Line Usage of uTimerScript

The uTimerScript application is typically launched as a part of a batch of processes by pAntler,
but may also be launched from the command line by the user. The basic command line usage for
the uTimerScript application is the following:

Listing 27 - Command line usage for the uTimerScript tool.

0 Usage: uTimerScript file.moos [OPTIONS]

1

2 Options:

3 --alias=<ProcessName>

4 Launch uTimerScript with the given process name

5 rather than uTimerScript.

6 --example, -e

7 Display example MOOS configuration block

8 --help, -h

72

9 Display this help message.

10 --shuffle=Boolean (true/false)

11 If true, script is recalculated on each reset.

12 If event times configured with random range, the

13 ordering may change after a reset.

14 The default is true.

15 --verbose=Boolean (true/false)

16 Display script progress and diagnostics if true.

17 The default is true.

18 --version,-v

19 Display the release version of uTimerScript.

Note that the --alias option is the only way to launch more than one uTimerScript process
connected to the same MOOSDB.

9.1.5 An Example MOOS Configuration Block

As of MOOS-IvP Release 4.2, most if not all MOOS apps are implemented to support the -e

or --example command-line switches. To see an example MOOS configuration block, enter the
following from the command-line:

$ uTimerScript -e

This will show the output shown in Listing 28 below.

Listing 28 - Example configuration of the uTimerScript application.

0 ===

1 uTimerScript Example MOOS Configuration

2 ===

3 Blue lines: Default configuration

4 Magenta lines: Non-default configuration

5

6 ProcessConfig = uTimerScript

7 {

8 AppTick = 4

9 CommsTick = 4

10

11 // Logic condition that must be met for script to be unpaused

12 condition = WIND_GUSTS = true

13 // Seconds added to each event time, on each script pass

14 delay_reset = 0

15 // Seconds added to each event time, on first pass only

16 delay_start = 0

17 // Event(s) are the key components of the script

18 event = var=SBR_RANGE_REQUEST, val="name=archie", time=25:35

19 // A MOOS variable for taking cues to forward time

20 forward_var = UTS_FORWARD // or other MOOS variable

21 // If true script is paused upon launch

22 paused = false // or {true}

23 // A MOOS variable for receiving pause state cues

24 pause_var = UTS_PAUSE // or other MOOS variable

25 // Declaration of random var macro expanded in event values

73

26 randvar = varname=ANG, min=0, max=359, key=at_reset

27 // Maximum number of resets allowed

28 reset_max = nolimit // or in range [0,inf)

29 // A point when the script is reset

30 reset_time = none // or {all-posted} or range (0,inf)

31 // A MOOS variable for receiving reset cues

32 reset_var = UTS_RESET // or other MOOS variable

33 // If true script will complete if conditions suddenly fail

34 script_atomic = false // or {true}

35 // A hopefully unique name given to the script

36 script_name = unnamed

37 // If true timestamps are recalculated on each script reset

38 shuffle = true

39 // If true progress is generated to the console

40 verbose = true // or {false}

41 // Reset or restart script upon conditions being met after failure

42 upon_awake = n/a // or {reset,resstart}

43 // A MOOS variable for posting the status summary

44 status_var = UTS_STATUS // or other MOOS variable

45 // Rate at which time is accelerated in execuing the script

46 time_warp = 1

47 }

9.2 Basic Usage of the uTimerScript Utility

Configuring a script minimally involves the specification of one or more events, with an event
comprising of a MOOS variable and value to be posted and the time at which it is to be posted.
Scripts may also be reset on a set policy, or from a trigger by an external process.

9.2.1 Configuring the Event List

The event list or script is configured by declaring a set of event entries with the following format:

EVENT = var=<moos-variable>, val=<var-value>, time=<time-of-event>

The keywords EVENT, var, val, and time are not case sensitive, but the values <moos-variable> and
<var-value> are case sensitive. The <var-value> type is posted either as a string or double based
on the following heuristic: if the <var-value> has a numerical value it is posted as a double, and
otherwise posted as a string. If one wants to post a string with a numerical value, putting quotes
around the number suffices to have it posted as a string. Thus val=99 posts a double, but var="99"

posts a string. If a string is to be posted that contains a comma such as "apples, pears", one must
put the quotes around the string to ensure the comma is interpreted as part of <var-value>. The
value field may also contain one or more macros expanded at the time of posting, as described in
Section 9.4.

Setting the Event Time or Range of Event Times

The value of <time-of-event> is given in seconds and must be a numerical value greater or equal to
zero. The time represents the amount of elapsed time since the uTimerScript was first launched and
un-paused. The list of events provided in the configuration block need not be in order - they will
be ordered by the uTimerScript utility. The <time-of-event> may also be specified by a interval

74

of time, e.g., time=0:100, such that the event may occur at some point in the range with uniform
probability. The only restrictions are that the lower end of the interval is greater or equal to zero,
and less than or equal to the higher end of the interval. By default the timestamps are calculated
once from their specified interval, at the the outset of uTimerScript. The script may alternatively
be configured to recalculate the timestamps from their interval each time the script is reset, using
the SHUFFLE=true configuration. This parameter, and resetting in general, are described in the next
Section (9.2.2).

9.2.2 Resetting the Script

The timer script may be reset to its initial state, resetting the stored elapsed-time to zero and
marking all events in the script as pending. This may occur either by cueing from an event outside
uTimerScript, or automatically from within uTimerScript. Outside-cued resets can be triggered by
posting UTS RESET="reset", or "true". The RESET VAR parameter names a MOOS variable that may
be used as an alternative to UTS RESET. It has the format:

RESET_VAR = <moos-variable> // Default is UTS_RESET

The script may be also be configured to auto-reset after a certain amount of time, or immediately
after all events are posted, using the RESET TIME parameter. It has the format:

RESET_TIME = <time-or-condition> // Default is "none"

The <time-or-condition> may be set to "all-posted" which will reset after the last event is posted.
If set to a numerical value greater than zero, it will reset after that amount of elapsed time,
regardless of whether or not there are pending un-posted events. If set to "none", the default, then
no automatic resetting is performed. Regardless of the RESET TIME setting, prompted resets via the
UTS RESET variable may take place when cued.

The script may be configured to accept a hard limit on the number of times it may be reset.
This is configured using the RESET MAX parameter and has the following format:

RESET_MAX = <amount> // Default is "nolimit"

The <amount> specified may be any number greater or equal to zero, where the latter, in effect,
indicates that no resets are permitted. If unlimited resets are desired (the default), the case
insensitive argument "unlimited" or "any" may be used.

The script may be configured to recalculate all event timestamps specified with a range of values
whenever the script is reset. This is done with the following parameter:

SHUFFLE = true // Default is "false"

The script may be configured to reset or restart each time it transitions from a situation where
its conditions are not met to a situation where its conditions are met, or in other words, when the
script is ”awoken”. The use of logic conditions is described in more detail in Section 9.3.1. This is
done with the following parameter:

UPON_AWAKE = restart // Default is "n/a", no action

Note that this does not apply when the script transitions from being paused to un-paused as
described in Section 9.3.1. See the example in Section 9.7.1 for a case where the UPON AWAKE feature
is handy.

75

9.3 Script Flow Control

The script flow may be affected in a number of ways in addition to the simple passage of time. It
may be (a) paused by explicitly pausing it, (b) implicitly paused by conditioning the flow on one
or more logic conditions, (c) fast-forwarded directly to the next scheduled event, or fast-forwarded
some number of seconds. Each method is described in this section.

9.3.1 Pausing the Timer Script

The script can be paused at any time and set to be paused initially at start time. The PAUSED param-
eter affects whether the timer script is actively unfolding at the outset of launching uTimerScript.
It has the following format:

PAUSED = <Boolean>

The keyword PAUSED and the string representing the Boolean are not case sensitive. The Boolean
simply must be either "true" or "false". By setting PAUSED=true, the elapsed time calculated by
uTimerScript is paused and no variable-value pairs will be posted. When un-paused the elapsed time
begins to accumulate and the script begins or resumes unfolding. The default value is PAUSED=false.

The script may also be paused through the MOOS variable UTS PAUSE which may be posted by
some other MOOS application. The values recognized are "true", "false", or "toggle", all case
insensitive. The name of this variable may be substituted for a different one with the PAUSE VAR

parameter in the uTimerScript configuration block. It has the format:

PAUSE_VAR = <moos-variable> // Default is UTS_PAUSE

If multiple scripts are being used (with multiple instances of uTimerScript connected to the MOOSDB),
setting the PAUSE VAR to a unique variable may be needed to avoid unintentionally pausing or un-
pausing multiple scripts with single write to UTS PAUSE.

9.3.2 Conditional Pausing of the Timer Script and Atomic Scripts

The script may also be configured to condition the “paused-state” to depend on one or more logic
conditions. If conditions are specified in the configuration block, the script must be both un-paused
as described above in Section 9.3.1, and all specified logic conditions must be met in order for the
script to begin or resume proceeding. The logic conditions are configured as follows:

CONDITION = <logic-expression>

The <logic-expression> syntax is described in Appendix A, and may involve the simple comparison
of MOOS variables to specified literal values, or the comparison of MOOS variables to one another.
See the script configuration in Section 9.7.1 for one example usage of logic expressions.

An atomic script is one that does not check conditions once it has posted its first event, and
prior to posting its last event. Once a script has started, it is treated as unpausable with respect
to the the logic conditions. It can however be paused and unpaused via the pause variable, e.g.,
UTS PAUSE, as described in Section 9.3.1. If the logic conditions suddenly fail in an atomic script
midway, the check is simply postponed until after the script completes and is perhaps reset. If the
conditions in the meanwhile revert to being satisfied, then no interruption should be observable.

76

9.3.3 Fast-Forwarding the Timer Script

The timer script, when un-paused, moves forward in time with events executed as their event
times arrive. However, the script may be moved forwarded by writing to the MOOS variable
UTS FORWARD. If the value received is zero (or negative), the script will be forwarded directly to the
point in time at which the next scheduled event occurs. If the value received is positive, the elapsed
time is forwarded by the given amount. Alternatives to the MOOS variable UTS FORWARD may be
configured with the parameter:

FORWARD_VAR = <moos-variable> // Default is UTS_FORWARD

If multiple scripts are being used (with multiple instances of uTimerScript connected to the MOOSDB),
setting the FORWARD VAR to a unique variable may be needed to avoid unintentionally fast forwarding
multiple scripts with single write to UTS FORWARD.

9.4 Macro Usage in Event Postings

Macros may be used to add a dynamic component to the value field of an event posting. This
substantially expands the expressive power and possible uses of the uTimerScript utility. Recall
that the components of an event are defined by:

EVENT = var=<moos-variable>, val=<var-value>, time=<time-of-event>

The <var-value> component may contain a macro of the form $[MACRO], where the macro is
either one of a few built-in macros available, or a user-defined macro with the ability to represent
random variables. Macros may also be combined in simple arithmetic expressions to provide further
expressive power. In each case, the macro is expanded at the time of the event posting, typically
with different values on each successive posting.

9.4.1 Built-In Macros Available

There are five built-in macros available: $[DBTIME], $[UTCTIME], $[COUNT], $[TCOUNT], and $[IDX].
The first macro expands to the estimated time since the MOOSDB started, similar to the value in
the MOOS variable DB UPTIME published by the MOOSDB. An example usage:

EVENT = var=DEPLOY_RECEIVED, val=$[DBTIME], time=10:20

The $[UTCTIME] macro expands to the UTC time at the time of the posting. The $[COUNT]

macro expands to the integer total of all posts thus far in the current execution of the script, and is
reset to zero when the script resets. The $[TCOUNT] macro expands to the integer total of all posts
thus far since the application began, i.e., it is a running total that is not reset when the script is
reset.

The $[DBTIME], $[UTCTIME], $[COUNT], and $[TCOUNT] macros all expand to numerical values,
which if embedded in a string, will simply become part of the string. If the value of the MOOS
variable posting is solely this macro, the variable type of the posting is instead a double, not a
string. For example val=$[DBTIME] will post a type double, whereas val="time:$[DBTIME]" will post
a type string.

77

The $[IDX] macro is similar to the $[COUNT] macro in that it expands to the integer value
representing an event’s count or index into the sequence of events. However, it will always post as
a string and will be padded with zeros to the left, e.g., "000", "001", ... and so on.

9.4.2 User Configured Macros with Random Variables

Further macros are available for use in the <var-value> component of an event, defined and config-
ured by the user, and based on the idea of a random variable. In short, the macro may expand to a
numerical value chosen within a user specified range, and recalculated according to a user-specified
policy. The general format is:

RAND_VAR = varname=<variable>, min=<low_value>, max=<high_value>, key=<key_name>

The <variable> component defines the macro name. The <low value> and <high value> compo-
nents define the range from which the random value will be chosen uniformly. The <key name> de-
termines when the random value is reset. The following three key names are significant: "at start",
"at reset", and "at post". Random variables with the key name "at start" are assigned a random
value only at the start of the uTimerScript application. Those with the "at reset" key name also
have their values re-assigned whenever the script is reset. Those with the "at post" key name also
have their values re-assigned after any event is posted.

9.4.3 Support for Simple Arithmetic Expressions with Macros

Macros that expand to numerical values may be combined in simple arithmetic expressions with
other macros or scalar values. The general form is:

{<value> <operator> <value>}

The <value> components may be either a scalar or a macro, and the <operator> component may
be one of ’+’, ’-’, ’*’, ’/’. Nesting is also supported. Below are some examples:

{$[FOOBAR] * 0.5}
{-2-$[FOOBAR]}
{$[APPLES] + $[PEARS]}
{35 / {$[FOOBAR]-2}}
{$[DBTIME] - {35 / {$[UTCTIME]+2}}}

If a macro should happen to expand to a string rather than a double (numerical) value, the string
evaluates to zero for the sake of the remaining evaluations.

9.5 Random Time Warps and Initial Delays

A time warp and initial start delay may be optionally configured into the script to change the event
schedule without having to edit all the time entries for each event. They may also be configured to
take on a new random value at the outset of each script execution to allow for simulation of events
in nature or devices having a random component.

78

9.5.1 Random Time Warping

The time warp is a numerical value in the range (0,∞], with a default value of 1.0. Lower values
indicate that time is moving more slowly. As the script unfolds, a counter indicating "elapsed time"

increases in value as long as the script is not paused. The "elapsed time" is multiplied by the time
warp value. The time warp may be specified as a single value or a range of values as below:

TIME_WARP = <value>
TIME_WARP = <low-value>:<high-value>

When a range of values is specified, the time warp value is calculated at the outset, and re-calculated
whenever the script is reset. See the example in Section 9.7.2 for a use of random time warping to
simulate random wind gusts.

9.5.2 Random Initial Start Delays

The start delay is given in seconds in the range [0,∞], with a default value of 0. The effect of
having a non-zero delay of n seconds is to have elapsed time=n at the outset of the script and all
resets of the script. Thus a delay of n seconds combined with a time warp of 0.5 would result in
observed delay of 2 ∗ n seconds. The start delay may be specified as a single value or a range of
values as below:

START_DELAY = <value>
START_DELAY = <low-value>:<high-value>

When a range of values is specified, the start delay value is calculated at the outset, and re-
calculated whenever the script is reset. See the example in Section 9.7.1 for a use of random start
delays to the simulate the delay in acquiring satellite fixes in a GPS unit on an UUV coming to
the surface.

9.6 More on uTimerScript Output to the MOOSDB and Console

The activity of uTimerScript may be monitored in two ways: (a) by a status message posted the
MOOSDB, and by standard output to the uTimerScript console window.

9.6.1 Status Messages Posted to the MOOSDB by uTimerScript

The uTimerScript periodically publishes a string indicating the status of the script. The following
is an example:

UTS_STATUS = "name=RND_TEST, elapsed_time=2.00, posted=1, pending=5, paused=false,

conditions_ok=true, time_warp=3, start_delay=0, shuffle=false, upon_awake=restart, resets=2/5"

In this case, the script has posted one of six events (posted=1, pending=5). It is actively unfolding,
since paused=false (Section 9.3.1) and conditions ok=true (Section 9.3.2). It has been reset twice
out of a maximum of five allowed resets (resets=2/5, Section 9.2.2). Time warping is being deployed

79

(time warp=3, Section 9.5.1), there is no start delay in use (start delay=0, Section 9.5.2). The
shuffle feature is turned off (shuffle=false, Section 9.2.2). The script is not configured to reset
upon re-entering the un-paused state (awake reset=false, Section 9.2.2).

When multiple scripts are running in the same MOOS community, one may want to take
measures to discern between the status messages generated across scripts. One way to do this is to
use a unique MOOS variable other than UTS STATUS for each script. The variable used for publishing
the status may be configured using the STATUS VAR parameter. It has the following format:

STATUS_VAR = <moos-variable> // Default is UTS_STATUS

Alternatively, a unique name may be given to each to each script. All status messages from all
scripts would still be contained in postings to UTS STATUS, but the different script output could be
discerned by the name field of the status string. The script name is set with the following format.

SCRIPT_NAME = <string> // Default is "unnamed"

9.6.2 Console Output Generated by uTimerScript

The script configuration and progress of script execution may also be monitored from an open
console window where uTimerScript is launched, if the verbose setting is turned on (by default).
Example output is shown below in Listing 29.

Listing 29 - Example uTimerScript console output.

0 Random Variable configurations:

1 [0]: varname=ANGLE, keyname=at_reset, min=10, max=350

2 [1]: varname=MAGN, keyname=at_reset, min=0.5, max=1.5

3

4

5 The Raw Script: ==

6 Total Elements: 10

7 [0] USM_FORCE_ANGLE=$[ANGLE], TIME:-1, RANGE=[0,0], POSTED=false

8 [1] USM_FORCE_MAGNITUDE_AAD={$[MAGN]*0.2}, TIME:-1, RANGE=[2,2], POSTED=false

9 [2] USM_FORCE_MAGNITUDE_AAD={$[MAGN]*0.2}, TIME:-1, RANGE=[4,4], POSTED=false

10 [3] USM_FORCE_MAGNITUDE_AAD={$[MAGN]*0.2}, TIME:-1, RANGE=[6,6], POSTED=false

11 [4] USM_FORCE_MAGNITUDE_AAD={$[MAGN]*0.2}, TIME:-1, RANGE=[8,8], POSTED=false

12 [5] USM_FORCE_MAGNITUDE_AAD={$[MAGN]*0.2}, TIME:-1, RANGE=[10,10], POSTED=false

13 [6] USM_FORCE_MAGNITUDE_AAD={$[MAGN]*-0.2}, TIME:-1, RANGE=[12,12], POSTED=false

14 [7] USM_FORCE_MAGNITUDE_AAD={$[MAGN]*-0.2}, TIME:-1, RANGE=[14,14], POSTED=false

15 [8] USM_FORCE_MAGNITUDE_AAD={$[MAGN]*-0.2}, TIME:-1, RANGE=[16,16], POSTED=false

16 [9] USM_FORCE_MAGNITUDE_AAD={$[MAGN]*-0.2}, TIME:-1, RANGE=[18,18], POSTED=false

17 ==

18

19 uTimerScript_wind is Running:

20 AppTick @ 5.0 Hz

21 CommsTick @ 5 Hz

22 Script (Re)Initialized. Time Warp=5 StartDelay=0

23 [a/239.512][0]: USM_FORCE_ANGLE = 78.068

24 [u/239.915][2.01267]: USM_FORCE_MAGNITUDE_AAD = 0.19936

25 [o/240.318][4.02825]: USM_FORCE_MAGNITUDE_AAD = 0.19936

26 [i/240.722][6.04633]: USM_FORCE_MAGNITUDE_AAD = 0.19936

80

27 [c/241.124][8.06040]: USM_FORCE_MAGNITUDE_AAD = 0.19936

28 [w/241.528][10.0767]: USM_FORCE_MAGNITUDE_AAD = 0.19936

29 [q/241.931][12.0913]: USM_FORCE_MAGNITUDE_AAD = -0.19936

30 [j/242.313][14.0038]: USM_FORCE_MAGNITUDE_AAD = -0.19936

31 [d/242.716][16.0205]: USM_FORCE_MAGNITUDE_AAD = -0.19936

32 [x/243.119][18.0340]: USM_FORCE_MAGNITUDE_AAD = -0.19936

In the first block (lines 1-2), the configuration of random variables for use as macros is displayed. In
the second block (lines 5-17), the raw script, prior to macro expansion or time-stamp allocation is
displayed. In the third block (lines 22-32), events are printed as they occur. Each event shows two
timestamps. The first, on the left, shows the approximate time relative to the MOOSDB start time
(which is typical in MOOS log files). The second set of timestamps shown in the second column is
the "elapsed time" since the start of the script (which may be affected by time warp, start delay,
and pausing).

9.7 Examples

The examples in this section demonstrate the constructs thus far described for the uTimerScript

application. In each case, the use of the script obviated the need for developing and maintaining a
separate dedicated MOOS application.

9.7.1 A Script Used as Proxy for an On-Board GPS Unit

Typical operation of an underwater vehicle includes the periodic surfacing to obtain a GPS fix to
correct navigation error accumulated while under water. A GPS unit that has been out of satellite
communication for some period normally takes some time to re-acquire enough satellites to resume
providing position information. From the perspective of the helm and configuring an autonomy
mission, it is typical to remain at the surface only long enough to obtain the GPS fix, and then
resume other aspects of the mission at-depth.

Consider a situation as shown in Figure 17, where the autonomy system is running in the
payload on a payload computer, receiving not only updated navigation positions (in the form of
NAV DEPTH, NAV X, and NAV Y), but also a ”heartbeat” signal each time a new GPS position has been
received (GPS RECEIVED). This heartbeat signal may be enough to indicate to the helm and mission
configuration that the objective of the surface excursion has been achieved.

81

Figure 17: Simulating a GPS Acknowledgment: In a physical operation of the vehicle, the navigation solution and
a GPS UPDATE RECEIVED heartbeat are received from the main vehicle (front-seat) computer via a MOOS module acting
as an interface to the front-seat computer. In simulation, the navigation solution is provided by the simulator without
any GPS UPDATE RECEIVED heartbeat. This element of simulation may be provided with uTimerScript configured to
post the heartbeat, conditioned on the NAV DEPTH information and a user-specified start delay to simulate GPS
acquisition delay.

In simulation, however, the simulator only produces a steady stream of navigation updates with no
regard to a simulated GPS unit. At this point there are three choices: (a) modify the simulator to
fake GPS heartbeats and satellite delay, (b) write a separate simple MOOS application to do the
same simulation. The drawback of the former is that one may not want to branch a new version of
the simulator, or even introduce this new complexity to the simulator. The drawback of the latter
is that, if one wants to propagate this functionality to other users, this requires distribution and
version control of a new MOOS application.

A third and perhaps preferable option (c) is to write a short script for uTimerScript simulating
the desired GPS characteristics. This achieves the objectives without modifying or introducing new
source code. The below script in Listing 30 gets the job done.

Listing 30 - A uTimerScript configuration for simulating aspects of a GPS unit.

1 //--

2 // uTimerScript configuration block

3

4 ProcessConfig = uTimerScript

5 {

6 AppTick = 4

7 CommsTick = 4

8

9 PAUSED = false

10 RESET_MAX = unlimited

11 RESET_TIME = end

12 CONDITION = NAV_DEPTH < 0.2

13 UPON_AWAKE = restart

14 DELAY_START = 20:120

15 SCRIPT_NAME = GPS_SCRIPT

16

17 EVENT = var=GPS_UPDATE_RECEIVED, val="RCVD_$[COUNT]", time=0:1

18 }

82

This script posts a GPS UPDATE RECEIVED heartbeat message roughly once every second, based on
the event time "time=0:1" on line 17. The value of this message will be unique on each posting
due to the $[COUNT] macro in the value component. See Section 9.4.1 for more on macros. The
script is configured to restart each time it awakes (line 13), defined by meeting the condition of
(NAV DEPTH < 0.2) which is a proxy for the vehicle being at the surface. The DELAY START simulates
the time needed for the GPS unit to reacquire satellite signals and is configured to be somewhere
in the range of 20 to 120 seconds (line 14). Once the script gets past the start delay, the script is a
single event (line 17) that repeats indefinitely due to the RESET MAX=unlimited and RESET TIME=end

settings in lines 10 and 11. This script is used in the IvP Helm example simulation mission labeled
"s4 delta" illustrating the PeriodicSurface helm behavior.

9.7.2 A Script as a Proxy for Simulating Random Wind Gusts

Simulating wind gusts, or in general, somewhat random external periodic forces on a vehicle, are
useful for testing the robustness of certain autonomy algorithms. Often they don’t need to be
grounded in very realistic models of the environment to be useful, and here we show how a script
can be used simulate such forces in conjunction with the uSimMarine application.

The uSimMarine application is a simple simulator that produces a stream of navigation infor-
mation, NAV X, NAV Y, NAV SPEED, NAV DEPTH, and NAV HEADING (Figure 18), based on the vehicle’s last
known position and trajectory, and currently observed values for actuator variables. The simulator
also stores local state variables reflecting the current external force in the x-y plane, by default
zero. An external force may be specified in terms of a force vector, in absolute terms with the
variable USM FORCE VECTOR, or in relative terms with the variables USM FORCE VECTOR ADD.

Figure 18: Simulated Wind Gusts: The uTimerScript application may be configured to post periodic sequences
of external force values, used by the uSimMarine application to simulate wind gust effects on its simulated vehicle.

The script in Listing 31 makes use of the uSimMarine interface by posting periodic force vectors.
It simulates a wind gust with a sequence of five posts to increase a force vector (lines 18-22), and
complementary sequence of five posts to decrease the force vector (lines 24-28) for a net force of
zero at the end of each script execution.

Listing 31 - A uTimerScript configuration for simulating simple wind gusts.

0 //--

83

1 // uTimerScript configuration block

2

3 ProcessConfig = uTimerScript

4 {

5 AppTick = 2

6 CommsTick = 2

7

8 PAUSED = false

9 RESET_MAX = unlimited

10 RESET_TIME = end

11 DELAY_RESET = 10:60

12 TIME_WARP = 0.25:2.0

13 SCRIPT_NAME = WIND

14 SCRIPT_ATOMIC = true

15

16 RANDVAR = varname=ANG, min=0, max=359, key=at_reset

17 RANDVAR = varname=MAG, min=0.5, max=1.5, key=at_reset

18

19 EVENT = var=USM_FORCE_VECTOR_ADD, val="$[ANG],{$[MAG]*0.2}", time=0

20 EVENT = var=USM_FORCE_VECTOR_ADD, val="$[ANG],{$[MAG]*0.2}", time=2

21 EVENT = var=USM_FORCE_VECTOR_ADD, val="$[ANG],{$[MAG]*0.2}", time=4

22 EVENT = var=USM_FORCE_VECTOR_ADD, val="$[ANG],{$[MAG]*0.2}", time=6

23 EVENT = var=USM_FORCE_VECTOR_ADD, val="$[ANG],{$[MAG]*0.2}", time=8

24

25 EVENT = var=USM_FORCE_VECTOR_ADD, val="$[ANG],{$[MAG]*-0.2}", time=10

26 EVENT = var=USM_FORCE_VECTOR_ADD, val="$[ANG],{$[MAG]*-0.2}", time=12

27 EVENT = var=USM_FORCE_VECTOR_ADD, val="$[ANG],{$[MAG]*-0.2}", time=14

28 EVENT = var=USM_FORCE_VECTOR_ADD, val="$[ANG],{$[MAG]*-0.2}", time=16

29 EVENT = var=USM_FORCE_VECTOR_ADD, val="$[ANG],{$[MAG]*-0.2}", time=18

30 }

The force angle is chosen randomly in the range of [0, 359] by use of the random variable macro
$[ANG] defined on line 16. The peak magnitude of the force vector is chosen randomly in the range
of [0.5, 1.5] with the random variable macro $[MAG] defined on line 17. Note that these two macros
have their random values reset each time the script begins, by using the key=at reset option, to
ensure a stream of wind gusts of varying angles and magnitudes.

The duration of each gust sequence also varies between each script execution. The default
duration is about 20 seconds, given the timestamps of 0 to 18 seconds in lines 19-29. The TIME WARP

option on line 12 affects the duration with a random value chosen from the interval of [0.25, 2.0].
A time warp of 0.25 results in a gust sequence lasting about 80 seconds, and 2.0 results in a gust of
about 10 seconds. The time between gust sequences is chosen randomly in the interval [10, 60] by
use of the DELAY RESTART parameter on line 11. Used in conjunction with the TIME WARP parameter,
the interval for possible observed delays between gusts is [5, 240]. The RESET TIME=end parameter
on line 10 is used to ensure that the script posts all force vectors to avoid any accumulated forces
over time. The RESET MAX parameter is set to "unlimited" to ensure the script runs indefinitely.

84

10 The pNodeReporter Utility: Summarizing a Node’s Status

The pNodeReporter MOOS application runs on each vehicle (real or simulated) and generates node-
reports (as a proxy for AIS reports) for sharing between vehicles, depicted in Figure 19. The process
serves one primary function - it repeatedly gathers local platform information and navigation data
and creates an AIS like report in the form of the MOOS variable NODE REPORT LOCAL. The NODE REPORT

messages are communicated between the vehicles and the shore or shipside command and control
through an inter-MOOSDB communications process such as pMOOSBridge or via acoustic modem.
Since a node or platform may both generate and receive reports, the locally generated reports are
labeled with the LOCAL suffix and bridged to the outside communities without the suffix. This
is to ensure that processes running locally may easily distinguish between locally generated and
externally generated reports.

Figure 19: Typical pNodeReporter usage: The pNodeReporter application is typically used with pMOOSBridge or
acoustic modems to share node summaries between vehicles and to a shoreside command-and-control GUI.

To generate the local report, pNodeReporter registers for the local NAV * vehicle navigation data
and creates a report in the form of a single string posted to the variable NODE REPORT LOCAL. An
example of this variable is given in below in Section 10.1.2. The pMarineViewer and pHelmIvP

applications are two modules that consume and parse the incoming NODE REPORT messages.

The pNodeReporter utility may also publish a second report, the PLATFORM REPORT. While the
NODE REPORT summary consists of an immutable set of data fields described later in this sec-
tion, the PLATFORM REPORT consists of data fields configured by the user and may therefore vary
widely across applications. The user may also configure the frequency in which components of the
PLATFORM REPORT are posted within the report.

85

10.1 Overview of the pNodeReporter Interface and Configuration Options

The pNodeReporter application may be configured with a configuration block within a .moos file,
and from the command line. Its interface is defined by its publications and subscriptions for
MOOS variables consumed and generated by other MOOS applications. An overview of the set of
configuration options and interface is provided in this section.

10.1.1 Configuration Parameters for pNodeReporter

The following parameters are defined for pNodeReporter. A more detailed description is provided
in other parts of this section. Parameters having default values are indicated so in parentheses.

ALT NAV PREFIX: (10.2.5) Source for processing alternate nav reports.
ALT NAV NAME: (10.2.5) Node name in posting alternate nav reports.

CROSS FILL POLICY: (10.2.4) Policy for handling local versus global nav reports ("literal").
BLACKOUT INTERVAL: (10.3) Minimum duration, in seconds, between reports (0).
BLACKOUT VARIANCE: (10.3) Variance in uniformly random blackout duration (0).
NODE REPORT OUTPUT: (10.2.1) MOOS variable used for the node report (NODE REPORT LOCAL).
NOHELM THRESHOLD: (10.2.2) Seconds after which a quiet helm is reported as AWOL (5).
PLATFORM LENGTH: (10.2.3) The reported length of the platform in meters (0).
PLATFORM TYPE: (10.2.3) The reported type of the platform ("unknown").

PLAT REPORT OUTPUT: (10.4) Platform report MOOS variable (PLATFORM REPORT LOCAL).
PLAT REPORT INPUT: (10.4) A component of the optional platform report.

10.1.2 MOOS Variables Posted by pNodeReporter

The primary output of pNodeReporter to the MOOSDB is the node report and the optional plat-
form report:

NODE REPORT LOCAL (10.2.1) Primary summary of the node’s navigation and helm status.
PLATFORM REPORT LOCAL (10.2.3) Optional summary of certain platform characteristics.

10.1.3 MOOS Variables Subscribed for by pNodeReporter

Variables subscribed for by pNodeReporter are summarized below. A more detailed description of
each variable follows. In addition to these variables, any MOOS variable that the user requests to
be included in the optional PLATFORM REPORT will also be automatically subscribed for.

IVPHELM ENGAGED A indicator of helm engagement produced by pHelmIvP.
IVPHELM SUMMARY A summary report produced by the IvP Helm (pHelmIvP).

NAV X The ownship vehicle position on the x axis of local coordinates.
NAV Y The ownship vehicle position on the y axis of local coordinates.

NAV LAT The ownship vehicle position on the y axis of global coordinates.
NAV LONG The ownship vehicle position on the x axis of global coordinates.

86

NAV HEADING The ownship vehicle heading in degrees.
NAV YAW The ownship vehicle yaw in radians.

NAV SPEED The ownship vehicle speed in meters per second.
NAV DEPTH The ownship vehicle depth in meters.

If pNodeReporter is configured to handle a second navigation solution as described in Section 10.2.5,
the corresponding addition variables as described in that section will also be automatically sub-
scribed for.

10.1.4 Command Line Usage of pNodeReporter

The pNodeReporter application is typically launched as a part of a batch of processes by pAntler,
but may also be launched from the command line by the user. The basic command line usage for
the pNodeReporter application is the following:

Listing 32 - Command line usage for the pNodeReporter application.

0 Usage: pNodeReporter file.moos [OPTIONS]

1

2 Options:

3 --alias=<ProcessName>

4 Launch pNodeReporter with the given process name

5 rather than pNodeReporter.

6 --example, -e

7 Display example MOOS configuration block.

8 --help, -h

9 Display this help message.

0 --version,-v

11 Display the release version of pNodeReporter.

10.1.5 An Example MOOS Configuration Block

As of MOOS-IvP Release 4.2, most if not all MOOS apps are implemented to support the -e

or --example command-line switches. To see an example MOOS configuration block, enter the
following from the command-line:

$ pNodeReporter -e

This will show the output shown in Listing 33 below.

Listing 33 - Example configuration of the pNodeReporter application.

0 ===

1 pNodeReporter Example MOOS Configuration

2 ===

3 Blue lines: Default configuration

4 Magenta lines: Non-default configuration

5

6 ProcessConfig = pNodeReporter

7 {

8 AppTick = 4

87

9 CommsTick = 4

10

11 // Configure key aspects of the node

12 PLATFORM_TYPE = glider // or {uuv,auv,ship,kayak}

13 PLATFORM_LENGTH = 8 // meters. Range [0,inf)

14

15 // Configure optional blackout functionality

16 BLACKOUT_INTERVAL = 0 // seconds. Range [0,inf)

17

18 // Configure the optional platform report summary

19 PLAT_REPORT_INPUT = COMPASS_HEADING, gap=1

20 PLAT_REPORT_INPUT = GPS_SAT, gap=5

21 PLAT_REPORT_INPUT = WIFI_QUALITY, gap=1

22 PLAT_REPORT_OUTPUT = PLATFORM_REPORT_LOCAL

23

24 // Configure the MOOS variable containg the node report

25 NODE_REPORT_OUTPUT = NODE_REPORT_LOCAL

26

27 // Threshold for conveying an absense of the helm

28 NOHELM_THRESHOLD = 5 // seconds

29

30 // Policy for filling in missing lat/lon from x/y or v.versa

31 CROSSFILL_POLICY = literal // or {fill-empty,use-latest}

32

33 // Configure monitor/reporting of dual nav solution

34 ALT_NAV_PREFIX = NAV_GT

35 ALT_NAV_NAME = _GT

36 }

10.2 Basic Usage of the pNodeReporter Utility

10.2.1 Overview Node Report Components

The primary output of pNodeReporter is the node report string. It is a comma-separated list of
key-value pairs. The order of the pairs is not significant. The following is an example report:

NODE_REPORT_LOCAL = "NAME=alpha,TYPE=UUV,UTC_TIME=1252348077.59,X=51.71,Y=-35.50,
LAT=43.824981,LON=-70.329755,SPD=2.00,HDG=118.85,YAW=118.84754,
DEPTH=4.63,LENGTH=3.8,MODE=MODE@ACTIVE:LOITERING"

The UTC TIME reflects the Coordinated Universal Time as indicated by the system clock running
on the machine where the MOOSDB is running. Speed is given in meters per second, heading is in
degrees in the range [0, 360), depth is in meters, and the local x-y coordinates are also in meters.
The source of information for these fields is the NAV * navigation MOOS variables such as NAV SPEED.
The report also contains several components describing characteristics of the physical platform, and
the state of the IvP Helm, described next.

If desired, pNodeReporter may be configured to use a different variable than NODE REPORT LOCAL

for its node reports, with the configuration parameter NODE REPORT OUTPUT=FOOBAR REPORT. Most
applications that subscribe to node reports, subscribe to two variables, NODE REPORT LOCAL and
NODE REPORT. This is because node reports are meant to be bridged to other MOOS communities

88

(typically with pMOOSBridge but not necessarily). A node report should be broadcast only from the
community that generated the report. In practice, to ensure that node reports that arrive in one
community are not then sent out to other communities, the node reports generated locally have
the LOCAL suffix, and when they are sent to other communities they are sent to arrive with the new
variable name, minus the suffix.

10.2.2 Helm Characteristics

The node report contains one field regarding the current mode of the helm, MODE. Typically the
pNodeReporter and pHelmIvP applications are running on the same platform, connected to the same
MOOSDB. When the helm is running, but disengaged, i.e., in manual override mode, the MODE field
in the node report simply reads "MODE=DISENGAGED". When or if the helm is detected to be not
running, the field reads "MODE=NOHELM-SECS", where SECS is the number of seconds since the last
time pNodeReporter detected the presence of the helm, or "MODE=NOHELM-EVER" if no helm presence
has ever been detected since pNodeReporter has been launched.

How does pNodeReporter know about the health or status of the helm? It subscribes to two
MOOS variables published by the helm, IVPHELM ENGAGED and IVPHELM SUMMARY. These are described
more fully in [1], but below are typical example values:

IVPHELM_ENGAGED = "ENGAGED"

IVPHELM_SUMMARY = "iter=72,ofnum=1,warnings=0,utc_time=1273494076.22,solve_time=0.00,
create_time=0.00,loop_time=0.00,var=course:209.0,var=speed:1.2,
halted=false,running_bhvs=none,modes=MODE@ACTIVE:LOITERING,
active_bhvs=loiter$17.8$100.00$9$0.04$0/0,completed_bhvs=none
idle_bhvs=waypt_return$17.8$0/0:station-keep17.8n/a

The IVPHELM ENGAGED variable is published on each iteration of the pHelmIvP process regardless
of whether the helm is in manual override ("DISENGAGED") mode or not, and regardless of whether
the value of this variable has changed between iterations. It is considered the ”heartbeat” of the
helm. This is the variable monitored by pNodeReporter to determine whether a "NOHELM" message
is warranted. By default, a period of five seconds is used as a threshold for triggering a "NOHELM"

warning. This value may be changed by setting the NOHELM THRESHOLD configuration parameter.

When the helm is indeed engaged, i.e., not in manual override mode, the value of IVPHELM ENGAGED

posting simply reads "ENGAGED", but the helm further publishes the IVPHELM SUMMARY variable sim-
ilar to the above example. If the user has chosen to configure the helm using hierarchical mode
declarations (as described in [1]), the IVPHELM SUMMARY posting will include a component such
as "modes=MODE@ACTIVE:LOITERING" as above. This value is then included in the node report by
pNodeReporter. If the helm is not configured with hierarchical mode declarations, the node report
simply reports "MODE=ENGAGED".

10.2.3 Platform Characteristics

The node report contains three fields regarding the platform characteristics, NAME, TYPE, and LENGTH.
The name of the platform is equivalent to the name of the MOOS community within which
pNodeReporter is running. The MOOS community is declared as a global MOOS parameter (outside

89

any given process’ configuration block) in the .moos mission file. The TYPE and LENGTH parameters
are set in the pNodeReporter configuration block. They may alternatively derive their values from
a MOOS variable posted elsewhere by another process. The user may configure pNodeReporter

to use this external source by naming the MOOS variables with the PLATFORM LENGTH SRC and
PLATFORM TYPE SRC parameters. If both the source and explicit values are set, as for example:

PLATFORM_LENGTH = 12 // meters
PLATFORM_LENGTH_SRC = SYSTEM_LENGTH

then the explicit length of 12 would be used only if the MOOS variable SYSTEM LENGTH remained
unwritten to by any other MOOS application connected to the MOOSDB. The platform length
and type may be used by other platforms as a parameter affecting collision avoidance algorithms
and protocol. They are also used in the pMarineViewer application to allow the proper platform
icon to be displayed at the proper scale.

If the platform type is known, but no information about the platform length is known, certain
rough default values may be used if the platform type matches one of the following: "kayak” maps
to 4 meters, "uuv" maps to 4 meters, "auv" maps to 4 meters, "ship" maps to 18 meters, "glider"
maps to 3 meters.

10.2.4 Dealing with Local versus Global Coordinates

A primary component of the node report is the current position of the vehicle. The pNodeReporter

application subscribes for the following MOOS variables to garner this information: NAV X, NAV Y in
local coordinates, and the pair NAV LAT, NAV LONG in global coordinates. These two pairs should be
consistent, but what if they aren’t? And what if pNodeReporter is receiving mail for one pair but
not the other? Three distinct policy choices are supported:

• The default policy: node reports include exactly what is given. If NAV X and NAV Y are being
received only, then there will be no entry in the node report for global coordinates, and vice
versa. If both pairs are being received, then both pairs are reported. No attempt is made
to check or ensure that they are consistent. This is the default policy, equivalent to the
configuration CROSS FILL POLICY=literal.

• If one of the two pairs is not being received, pNodeReporter will fill in the missing pair from
the other. This policy can be chosen with the configuration CROSS FILL POLICY=fill-empty.

• If one of the two pairs has been received more recently, the older pair is updated by converting
from the other pair. The older pair may also be in a state where it has never been received.
This policy can be chosen with the configuration CROSS FILL POLICY=fill-latest.

10.2.5 Processing Alternate Navigation Solutions

Under normal circumstances, node reports are generated reflecting the current navigation solution
as defined by the incoming NAV * variables. The pNodeReporter application can handle the case
where the vehicle also publishes an alternate navigation solution, as defined by a sister set of
incoming MOOS variables separate from the NAV * variables. In this case pNodeReporter will monitor
both sets of variables and may generate two node reports on each iteration. The following two
configuration parameters are needed to activate this capability:

90

ALT_NAV_PREFIX = <prefix> // example: NAV_GT_
ALT_NAV_NAME = <node-name> // example: _GT

The configuration parameter, ALT NAV PREFIX, names a prefix for the alternate incoming naviga-
tion variables. For example, ALT NAV PREFIX=NAV GT would result in pNodeReporter subscribing for
NAV GT X, NAV GT Y and so on. A separate vehicle state would be maintained internally based on this
alternate set of navigation information and a second node report would be generated.

A second node report would be published under the same MOOS variable, NODE REPORT LOCAL,
but the NAME component of the report would be distict base on the value provided in the ALT NAV NAME

parameter. If a name is provided that does not begin with an underscore character, that name is
used. If the name does begin with an underscore, the name used in the report is the otherwise
configured name of the vehicle plus the suffix.

10.3 The Optional Blackout Interval Option

Under normal circumstances, the pNodeReporter application will post a node report once per iter-
ation, the gap between postings being determined solely by the APP TICK parameter (Figure 20).
However, there are times when it is desirable to add an artificial delay between postings. Node
reports are typically only useful as information sent to another node, or to a shoreside computer
rendering fielded vehicles, and there are often dropped node report messages due to the uncertain
nature of communications in the field, whether it be acoustic communications, wifi, or satellite link.

Applications receiving node reports usually implement provisions that take dropped messages
into account. A collision-avoidance or formation-following behavior, or a contact manager, may
extrapolate a contact position from its last received position and trajectory. A shoreside command-
and-control GUI such as pMarineViewer may render an interpolation of vehicle positions between
node reports. To test the robustness of applications needing to deal with dropped messages, a way
of simulating the dropped messages is desired. One way is to add this to the simulation version of
whatever communications medium is being used. For example, there is an acoustic communications
simulator where the dropping of messages may be simulated, where the probability of a drop may
even be tied to the range between vehicles. Another way is to simply simulate the dropped message
at the source, by adding delay to the posting of reports by pNodeReporter.

By setting the BLACKOUT INTERVAL parameter, pNodeReporter may be configured to ensure that
a node report is not posted until at least the duration specified by this parameter has elapsed, as
shown in Figure 21.

Figure 20: Normal schedule of node report postings: The pNodeReporter application will post node reports
once per application iteration. The duration of time between postings is directly tied to the frequency at which
pNodeReporter is configured to run, as set by the standard MOOS AppTick parameter.

91

Figure 21: The optional blackout interval parameter: The schedule of node report postings may be altered by
the setting the BLACKOUT INTERVAL parameter. Reports will not be posted until at least the time specified by the
blackout interval has elapsed since the previous posting.

An element of unpredictability may be added by specifying a value for the BLACKOUT VARIANCE

parameter. This parameter is given in seconds and defines an interval [−t, t] from which a value
is chosen with uniform probability, to be added to the duration of the blackout interval. This
variation is re-calculated after each interval determination. The idea is depicted in Figure 22.

Figure 22: Blackout intervals with varying duration: The duration of a blackout interval may be configured to
vary randomly within a user-specified range, specified in the BLACKOUT VARIANCE parameter.

Message dropping is typically tied semi-predictably to characteristics of the environment, such
as range between nodes, water temperature or platform depth, an so on. This method of simulating
dropped messages captures none of that. It is however simple and allows for easily proceeding with
the testing of applications that need to deal with the dropped messages.

10.4 The Optional Platform Report Feature

The pNodeReporter application allows for the optional reporting of another user-specified list of
information. This report is made by posting the PLATFORM REPORT LOCAL variable. An alternative
variable name may be used by setting the PLAT REPORT SUMMARY configuration parameter. This report
may be configured by specifying one or more components in the pNodeReporter configuration block,
of the following form:

PLAT_REPORT_INPUT = <variable>, gap=<duration>, alias=<variable>

If no component is specified, then no platform report will be posted. The <variable> element
specifies the name of a MOOS variable. This variable will be automatically subscribed for by
pNodeReporter and included in (not necessarily all) postings of the platform report. If the variable
BODY TEMP is specified, a component of the report may contain "BODY TEMP=98.6". An alias for a

92

MOOS variable may be specified. For example, alias=T, for the BODY TEMP component would result
in "T=98.6" in the platform report instead.

How often is the platform report posted? Certainly it will not be posted any more often than
the AppTick parameter allows, but it may be posted far more infrequently depending on the user
configuration and how often the values of its components are changing. The platform report is
posted only when one or more of its components requires a re-posting. A component requires a
re-posting only if (a) its value has changed, and (b) the time specified by its gap setting has elapsed
since the last platform report that included that component. When a PLATFORM REPORT LOCAL posting
is made, only components that required a posting will be included in the report.

The wide variation in configurations of the platform report allow for reporting information
about the node that may be very specific to the platform, not suitable for a general-purpose node
report. As an example, consider a situation where a shoreside application is running to monitor
the platform’s battery level and whether or not the payload compartment has suffered a breach,
i.e., the presence of water is detected inside. A platform report could be configured as follows:

PLAT_REPORT_INPUT = ACME_BATT_LEVEL, gap=300, alias=BATTERY_LEVEL

PLAT_REPORT_INPUT = PAYLOAD_BREACH

This would result in an initial posting of:

PLATFORM_REPORT_LOCAL = "platform=alpha,utc_time=1273510720.99,BATTERY_LEVEL=97.3,

PAYLOAD_BREACH=false"

In this case, the platform uses batteries made by the ACME Battery Company and the interface to
the battery monitor happens to publish its value in the variable ACME BATT LEVEL, and the software
on the shoreside that monitors all vehicles in the field accepts the generic variable BATTERY LEVEL,
so the alias is used. It is also known that the ACME battery monitor output tends to fluctuate a
percentage point or two on each posting, so the platform report is configured to include a battery
level component no more than once every five minutes, (gap=300). The MOOS process monitoring
the indication of a payload breach is known to have few false alarms and to publish its findings
in the variable PAYLOAD BREACH. Unlike the battery level which has frequent minor fluctuations and
degrades slowly, the detection of a payload breach amounts to the flipping of a Boolean value and
needs to be conveyed to the shoreside as quickly as possible. Setting gap=0, the default, ensures
that a platform report is posted on the very next iteration of pNodeReporter, presumably to be read
by a MOOS process controlling the platform’s outgoing communication mechanism.

10.5 An Example Platform Report Configuration Block for pNodeReporter

Listing 34 below shows an example configuration block for pNodeReporter where an extensive plat-
form report is configured to report information about the autonomous kayak platform to support a
“kayak dashboard” display running on a shoreside computer. Most of the components in the plat-
form report are specific to the autonomous kayak platform, which is precisely why this information
is included in the platform report, and not the node report.

Listing 34 - An example pNodeReporter configuration block.

0 //--

1 // pNodeReporter config block

93

2

3 ProcessConfig = pNodeReporter

4 {

5 AppTick = 2

6 CommsTick = 2

7

8 PLATFORM_TYPE = KAYAK

9 PLATFORM_LENGTH = 3.5 // Units in meters

10 NOHELM_THRESH = 5 // The default

11 BLACKOUT_INTERVAL = 0 // The default

12 BLACKOUT_VARIANCE = 0 // The default

13

14 NODE_REPORT_OUTPUT = NODE_REPORT_LOCAL // The default

15 PLAT_REPORT_OUTPUT = PLATFORM_REPORT_LOCAL // The default

16

17 PLAT_REPORT_INPUT = COMPASS_PITCH, gap=1

18 PLAT_REPORT_INPUT = COMPASS_HEADING, gap=1

19 PLAT_REPORT_INPUT = COMPASS_ROLL, gap=1

20 PLAT_REPORT_INPUT = DB_UPTIME, gap=1

21 PLAT_REPORT_INPUT = COMPASS_TEMPERATURE, gap=1, alias=COMPASS_TEMP

22 PLAT_REPORT_INPUT = GPS_MAGNETIC_DECLINATION, gap=10, alias=MAG_DECL

23 PLAT_REPORT_INPUT = GPS_SAT, gap=5

24 PLAT_REPORT_INPUT = DESIRED_RUDDER, gap=0.5

25 PLAT_REPORT_INPUT = DESIRED_HEADING, gap=0.5

26 PLAT_REPORT_INPUT = DESIRED_THRUST, gap=0.5

27 PLAT_REPORT_INPUT = GPS_SPEED, gap=0.5

28 PLAT_REPORT_INPUT = DESIRED_SPEED, gap=0.5

29 PLAT_REPORT_INPUT = WIFI_QUALITY, gap=0.5

30 PLAT_REPORT_INPUT = WIFI_QUALITY, gap=1.0

31 PLAT_REPORT_INPUT = MOOS_MANUAL_OVERRIDE, gap=1.0

33

34 }

94

11 The pBasicContactMgr Utility: Managing Platform Contacts

The pBasicContactMgr application deals with information about other known vehicles in its vicinity.
It is not a sensor application, but rather handles incoming “contact reports” which may represent
information received by the vehicle over a communications link, or may be the result of on-board
sensor processing. By default the pBasicContactMgr posts to the MOOSDB summary reports about
known contacts, but it also may be configured to post alerts, i.e., MOOS variables, with select
content about one or more of the contacts.

Figure 23: The pBasicContactMgr Application: The pBasicContactMgr utility receives NODE REPORT information
from other MOOS applications and manages a list of unique contact records. It may post additional user-configurable
alerts to the MOOSDB based on the contact information and user-configurable conditions. The source of contact
information may be external (via communications) or internal (via on-board sensor processing). The pSensor and
iCommsDevice modules shown here are fictional applications meant to convey these two sources of information
abstractly.

The pBasicContactMgr application is partly designed with simultaneous usage of the IvP Helm in
mind. The alerts posted by pBasicContactMgr may be configured to trigger the dynamic spawning
of behaviors in the helm, such as collision-avoidance behaviors. The pBasicContactMgr application
does not perform sensor fusion, and does not reason about or post information regarding the
confidence it has in the reported contact position relative to ground truth. These may be features
added in the future, or perhaps may be features of an alternative contact manager application
developed by a third party source.

11.1 Overview of the pBasicContactMgr Interface and Configuration Options

The pBasicContactMgr application may be configured with a configuration block within a .moos

file, and from the command line. Its interface is defined by its publications and subscriptions for
MOOS variables consumed and generated by other MOOS applications. An overview of the set of
configuration options and interface is provided in this section.

95

11.1.1 Brief Summary of the pBasicContactMgr Configuration Parameters

The following parameters are defined for pBasicContactMgr. A more detailed description is provided
in other parts of this section. Parameters having default values are indicate so in parentheses below.

ALERT: A description of a single alert.
ALERT RANGE: The range to a contact, in meters, within which an alert is posted (1,000).

ALERT CPA RANGE: The range to a contact, in meters, within which an alert is posted if CPA
over ALERT CPA TIME falls within the ALERT RANGE distance (1,000).

ALERT CPA TIME: The time, in seconds, for which ALERT CPA RANGE is calculated (0).
CONTACT MAX AGE: Seconds between reports before a contact is dropped from the list (3600).
DISPLAY RADII: If true, the two alert ranges are posted as viewable circles (false).

VERBOSE: If true, progress output is generated to the console (true).

11.1.2 MOOS Variables Posted by pBasicContactMgr

The primary output of pBasicContactMgr to the MOOSDB is the set of user-configured alerts.
Other variables are published on each iteration where a change is detected on its value:

CONTACTS LIST: A comma-separated list of contacts.
CONTACTS RECAP: A comma-separated list of contact summaries.

CONTACTS ALERTED: A list of contacts for which alerts have been posted.
CONTACTS UNALERTED: A list of contacts for which alerts are pending, based on the range criteria.
CONTACTS RETIRED: A list of contacts removed due to the information staleness.

CONTACT MGR WARNING: A warning message indicating possible mishandling of or missing data.

Some examples:

CONTACTS_LIST = "delta,gus,charlie,henry"
CONTACTS_ALERTED = "delta,charlie"
CONTACTS_UNALERTED = "gus,henry"
CONTACTS_RETIRED = "bravo,foxtrot,kilroy"
CONTACTS_RECAP = "name=delta,age=11.3,range=193.1 # name=gus,age=0.7,range=48.2 # \

name=charlie,age=1.9,range=73.1 # name=henry,age=4.0,range=18.2"

11.1.3 MOOS Variables Subscribed for by pBasicContactMgr

The pBasicContactMgr application will subscribe for the following MOOS variables:

CONTACT RESOLVED: A name of a contact that has been declared resolved.
NODE REPORT: A report about a known contact.

NAV X: Present position of ownship in local x coordinates.
NAV Y: Present position of ownship in local y coordinates.

NAV HEADING: Present ownship heading in degrees.

96

NAV SPEED: Present ownship speed in meters per second.
NAV DEPTH: Present ownship depth in meters.

11.1.4 Command Line Usage of pBasicContactMgr

The pBasicContactMgr application is typically launched as a part of a batch of processes by pAntler,
but may also be launched from the command line by the user. The basic command line usage for
the pBasicContactMgr application is the following:

Listing 35 - Command line usage for the pBasicContactMgr application.

0 Usage: pBasicContactMgr file.moos [OPTIONS]

1

2 Options:

3 --alias=<ProcessName>

4 Launch pBasicContactMgr with the given process name

5 rather than pBasicContactMgr.

6 --example, -e

7 Display example MOOS configuration block.

8 --help, -h

9 Display this help message.

10 --verbose=<Boolean>

11 Display status updates and diagnostics if true.

12 The default is true.

13 --version,-v

14 Display the release version of pBasicContactMgr.

11.1.5 An Example MOOS Configuration Block

As of MOOS-IvP Release 4.2, most if not all MOOS apps are implemented to support the -e

or --example command-line switches. To see an example MOOS configuration block, enter the
following from the command-line:

$ pBasicContactMgr -e

This will show the output shown in Listing 36 below.

Listing 36 - Example configuration of the pBasicContactMgr application.

0 ===

1 pBasicContactMgr Example MOOS Configuration

2 ===

3 Blue lines: Default configuration

4 Magenta lines: Non-default configuration

5

6 ProcessConfig = pBasicContactMgr

7 {

8 AppTick = 4

9 CommsTick = 4

10

11 // Alert configurations (one or more)

12 alert = var=CONTACT_INFO, val="name=avd_$[VNAME] # contact=$[VNAME]"

97

13

14 // Properties for all alerts

15 alert_range = 1000 // meters. Range [0,inf)

16 alert_cpa_range = 1000 // meters. Range [0,inf)

17 alert_cpa_time = 0 // seconds. Range [0,inf)

18

19 // Policy for retaining potentiall stale contacts

20 contact_max_age = 3600 // seconds. Range [0,inf)

21

22 // Configuring other output

23 display_radii = false // or {true}

24 verbose = true // or {false}

25 }

11.2 Basic Usage of the pBasicContactMgr Utility

The operation of pBasicContactMgr consists of posting user-configured alerts, and the posting of
several MOOS variables, the CONTACTS * variables, indicating the status of the contact manager.

11.2.1 Contact Alert Messages

Alert messages are used to alert other MOOS applications when a contact has been detected within
a certain range of ownship. Messages are configured in the pBasicContactMgr block of the .moos

file:

ALERT = var=<moos-variable>, val=<alert-content>

The <alert-content> may be any string with any, none, or all of the following macros available for
expansion:

$[VNAME]: The name of the contact.
$[X]: The position of the contact in local x coordinates.
$[Y]: The position of the contact in local y coordinates.

$[LAT]: The latitude position of the contact in earth coordinates.
$[LON]: The longitude position of the contact in earth coordinates.
$[HDG]: The reported heading of the contact.
$[SPD]: The reported speed of the contact.
$[DEP]: The reported depth of the contact.

$[VTYPE]: The reported vessel type of the contact.
$[UTIME]: The UTC time of the last report for the contact.

The following is an example configuration:

ALERT = var=CONTACT_INFO, val="name=avd_$[VNAME] # contact=$[VNAME]"

The right-hand side of the ALERT specification is a #-separated list of parameter=value pairs. Note
that in the above example, the value component in the val=<alert-content> pair itself is a string
with comma-separated parameter=value pairs. Putting the whole <alert-content> component in
double-quotes ensures that the comma separator is interpreted locally within that string.

98

11.2.2 Contact Alert Triggers

Alerts are triggered for all contacts based on range between ownship and the reported contact
position. It is assumed that each incoming contact report minimally contains the contact’s name
and present position. An alert will be triggered if the current range to the contact falls within the
distance given by ALERT RANGE, as in Contact-A in Figure 24.

Figure 24: Alert Triggers in pBasicContactMgr: An alert may be triggered by pBasicContactMgr if the contact
is within the alert range, as with Contact-A. It may also be triggered if the contact is within the alert cpa range,
and contact’s CPA distance is within the alert range, as with Contact-B. Contact-C shown here would not trigger
an alert since its CPA distance is its current range and is not within the alert range. Contact-D also would not
trigger an alert despite the fact that its CPA with ownship is apparently small, since its current absolute range is
outside the alert cpa range range.

The contact manager may also be configured with a second trigger criteria consisting of another
range and time interval:

ALERT_CPA_RANGE = <distance>
ALERT_CPA_TIME = <duration>

The ALERT CPA RANGE is typically larger than the ALERT RANGE. (Its influence is effectively disabled
when or if it is set to be equal to or less than the ALERT RANGE.) When a contact is outside the
ALERT RANGE, but within the ALERT CPA RANGE, as with Contact-B in Figure 24, the closest point of
approach (CPA) between the contact and ownship is calculated given their presently-known position
and trajectories. If the CPA distance falls below the ALERT RANGE value, an alert is triggered. The
ALERT CPA TIME interval is applied to the CPA calculation to mean that the calculated CPA distance
is the CPA distance within the next ALERT CPA TIME seconds.

99

11.2.3 Contact Alert Record Keeping

The contact manager keeps a record of all known contacts for which it has received a report. This
list is posted in the MOOS variable CONTACTS LIST, in a comma-separated string such as:

CONTACTS_LIST = "delta,gus,charlie,henry"

Once an alert is generated for a contact it is put on the “alerted” list and this subset of all contacts
is posted in the MOOS variable CONTACTS ALERTED, in a comma-separated string:

CONTACTS_ALERTED = "delta,charlie"

Likewise, those contacts for which no alert has been generated are in the “unalerted” list and this
is reflected in the MOOS variable CONTACTS UNALERTED:

CONTACTS_UNALERTED = "gus,henry"

Contact records are not maintained indefinitely and eventually are “retired” from the records after
some period of time during which no new reports are received for that contact. That period of time
is given by the CONTACT MAX AGE configuration parameter. The list of retired contacts is posted in
the MOOS variable CONTACTS RETIRED:

CONTACTS_RETIRED = "bravo,foxtrot,kilroy"

A contact recap of all non-retired contacts is also posted in the MOOS variable CONTACTS RECAP:

CONTACTS_RECAP = "name=delta,age=11.3,range=193.1 # name=gus,age=0.7,range=48.2 # \
name=charlie,age=1.9,range=73.1 # name=henry,age=4.0,range=18.2"

Each of these five MOOS variables is published only when its contents differ from its previous
posting.

11.2.4 Contact Resolution

An alert is generated by the contact manager for a given contact once, when the alert trigger criteria
is first met. In the iteration when the criteria is met, the contact is moved from the “un-alerted” list
to the “alerted” list, the alert is posted to the MOOSDB, and no further alerts are posted despite
any future calculations of the trigger criteria. One exception to this is when the pBasicContactMgr

receives notice that a contact has been “resolved”, through the MOOS variable CONTACT RESOLVED.
When a contact is resolved, it is moved from the alerted list back on to the un-alerted list.

11.3 Usage of the pBasicContactMgr with the IvP Helm

The IvP helm may used in conjunction with the contact manager to coordinate the dynamic
spawning of certain helm behaviors where the instance of the behavior is dedicated to a helm
objective associated with a particular contact. For example, a collision avoidance behavior, or a
behavior for maintaining a relative position to a contact for achieving sensing objectives, would be
examples of such behaviors. One may want to arrange for a new behavior to be spawned as the

100

contact becomes known. The helm needs a cue in the form of a MOOS variable posting to trigger
a new behavior spawning, and this is easily arranged with the alerts in the pBasicContactMgr.

On the flip-side of a new behavior spawning, a behavior may eventually declare itself completed
and remove itself from the helm. The conditions leading to completion are defined within the
behavior implementation and configuration. No cues external to the helm are required to make
that happen. However, once a alert has been generated by the contact manager for a particular
contact, it is not generated again, unless it receives a message that the contact has been “resolved”.
Therefore, if the helm wishes to received future alerts related to a contact for which it has received
an alert in the past, it must declare the contact “resolved” to the contact manager as discussed
in Section 11.2.4. This would be important, for example, in the following scenario: (a) a collision
avoidance behavior is spawned for a new contact that has come within range, (b) the behavior
completes and is removed from the helm, presumably because the contact has slipped safely out
of range, (c) the contact or ownship turns such that a collision avoidance behavior is once again
needed for the same contact.

An example mission is available for showing the use of the contact manager and its coordination
with the helm to spawn behaviors for collision avoidance. This mission is m2 berta and is described
in the IvP Helm documentation. In this mission two vehicles are configured to repeatedly go in
and out of collision avoidance range, and the contact manager repeatedly posts alerts that result
in the spawning of a collision avoidance behavior in the helm. Each time the vehicle goes out of
range, the behavior completes and dies off from the helm and is declared to the contact manager
to be resolved.

11.4 Console Output Generated by pBasicContactMgr

The status of the contact manager may be monitored from from an open console window where
pBasicContactMgr is launched, if the verbose setting is turned on (by default). Example output is
shown below in Listing 37.

Listing 37 - Example pBasicContactMgr console output.

0 --------------------- Iteration: 407

1 Time: 202.563

2 List: vehicle1

3 Alerted: vehicle1

4 UnAlerted:

5 Retired:

6 Recap: vname=vehicle1,range=34.36,age=1.26

7

8 Recent Alerts:

9 [0.00]: CONTACT_INFO=name=avd_vehicle1#contact=vehicle1

10 [81.27]: Resolved: vehicle1

11 [133.09]: CONTACT_INFO=name=avd_vehicle1#contact=vehicle1

In lines 2-6, the record-keeping status of the contact manager is output. These five lines are
equivalent to the content of the CONTACTS * variables described in Section 11.2.3. The iteration
number on line 0 is the iteration counter associated with the Iterate() loop of pBasicContactMgr.
The time stamp on line 1 represents the duration of time since the pBasicContactMgr was launched.

101

The Recent Alerts output in lines 8-11 reflect the ten most recent alert related events - either an
actual alert being posted or a contact resolution.

102

12 The uSimMarine Utility: Basic Vehicle Simulation

The uSimMarine application is a simple 3D vehicle simulator that updates vehicle state, position
and trajectory, based on the present actuator values and prior vehicle state. The typical usage
scenario has a single instance of uSimMarine associated with each simulated vehicle, as shown in
Figure 25.

Figure 25: Typical uSimMarine Usage: In an N-vehicle simulation, an instance if uSimMarine is used for each
vehicle. Each simulated vehicle typically has its own dedicated MOOS community. The IvP Helm (pHelmIvP)
publishes high-level control decisions. The PID controller (pMarinePID) converts the high-level control decisions to
low-level actuator decisions. Finally the simulator (uSimMarine) reads the low-level actuator postings to produce a
new vehicle position.

This style of simulation can be contrasted with simulators that simulate a comprehensive set of
aspects of the simulation, including multiple vehicles, and aspects of the environment and commu-
nications. The uSimMarine simulator simply focuses on a single vehicle. It subscribes for the vehicle
navigation state variables NAV X, NAV Y, NAV SPEED, NAV HEADING, NAV DEPTH, as well as the actuator
values DESIRED RUDDER, DESIRED THRUST, DESIRED ELEVATOR. The uSimMarine accommodates a notion
of external forces applied to the vehicle to crudely simulate current or wind. These forces may be
set statically or may be changing dynamically by other MOOS processes. The simulator also may
be configured with a simple geo-referenced data structure representing a field of water currents.

Under typical UUV payload autonomy operation, the uSimMarine and pMarinePID MOOS mod-
ules would not be present. The vehicle’s native controller would handle the role of pMarinePID, and
the vehicle’s native navigation system (and the vehicle itself) would handle the role of uSimMarine.

12.1 Overview of the uSimMarine Interface and Configuration Options

The uSimMarine application may be configured with a configuration block within a .moos file.
Its interface is defined by its publications and subscriptions for MOOS variables consumed and
generated by other MOOS applications. An overview of the set of configuration options and the
uSimMarine interface is provided in this section.

12.1.1 Brief Summary of the uSimMarine Configuration Parameters

The following parameters are defined for uSimMarine. A more detailed description is provided in
other parts of this section. Parameters having default values are indicated so in parentheses below.

103

BUOYANCY RATE Rate at which vehicle floats to surface at zero speed (0).
CURRENT FIELD A file containing the specification of a current field.

CURRENT FIELD ACTIVE If true, simulator uses the current field if specified.
FORCE VECTOR A pair of external force values, direction and magnitude.
FORCE THETA An external rotational force in degrees per second (0).

FORCE X An external force value applied in the x direction (0).
FORCE Y An external force value applied in the y direction (0).

MAX ACCELERATION Maximum rate of vehicle acceleration in m/s2 (0.5).
MAX DECELERATION Maximum rate of vehicle deceleration in m/s2 (0.5).

MAX DEPTH RATE Maximum rate of vehicle depth change, meters per second. (0.5).
MAX DEPTH RATE SPEED Vehicle speed at which max depth rate is achievable (2.5).

PREFIX Prefix of MOOS variables published (USM).
SIM PAUSE If true, the simulation is paused (false).

START DEPTH Initial vehicle depth in meters (0).
START HEADING Initial vehicle heading in degrees (0).

START POS A full starting position and trajectory specification.
START SPEED Initial vehicle speed in meters per second (0).

START X Initial vehicle x position in local coordinates (0).
START Y Initial vehicle y position in local coordinates (0).

THRUST FACTOR A scalar correlation between thrust and speed (20).
THRUST MAP A mapping between thrust and speed values.

THRUST REFLECT If true, negative thrust is simply opposite positive thrust (false).
TURN LOSS A range [0, 1] affecting speed lost during a turn, (0.85).
TURN RATE A range [0, 100] affecting vehicle turn radius, e.g., 0 is inf turn radius, (70).

12.1.2 MOOS Variables Posted by uSimMarine

The primary output of uSimMarine to the MOOSDB is the full specification of the updated vehicle
position and trajectory, along with a few other pieces of information:

USM DEPTH: The updated vehicle depth in meters.
USM FSUMMARY: A summary of the current total external force.
USM HEADING: The updated vehicle heading in degrees.

USM HEADING OVER GROUND: The updated vehicle heading over ground.
USM LAT: The updated vehicle latitude position.
USM LONG: The updated vehicle longitude position.
USM SPEED: The updated vehicle speed in meters per second.

USM SPEED OVER GROUND: The updated speed over ground.
USM X: The updated vehicle x position in local coordinates.
USM Y: The updated vehicle y position in local coordinates.

USM YAW: The updated vehicle yaw in radians.

An example USM FSUMMARY string: "ang=90, mag=1.5, xmag=90, ymag=0".

104

12.1.3 MOOS Variables Subscribed for by uSimMarine

The uSimMarine application will subscribe for the following MOOS variables:

DESIRED THRUST: The thruster actuator setting, [−100, 100].
DESIRED RUDDER: The rudder actuator setting, [−100, 100] .

DESIRED ELEVATOR: The depth elevator setting, [−100, 100].
USM SIM PAUSED: Simulation pause request, either true or false.

USM CURRENT FIELD: If true, a configured current field is active.
USM BUOYANCY RATE: Dynamically set the zero-speed float rate.
USM FORCE THETA: Dynamically set the external rotational force.

USM FORCE X: Dynamically set the external force in the x direction.
USM FORCE Y: Dynamically set the external force in the y direction.

USM FORCE VECTOR: Dynamically set the external force direction and magnitude.
USM FORCE VECTOR ADD: Dynamically modify the external force vector.
USM FORCE VECTOR MULT: Dynamically modify the external force vector magnitude.

USM RESET: Reset the simulator with a new position, heading, speed and depth.

Each iteration, after noting the changes in the navigation and actuator values, it posts a new set
of navigation state variables in the form of USM X, USM Y, USM SPEED, USM HEADING, USM DEPTH.

12.1.4 Command Line Usage of uSimMarine

The uSimMarine application is typically launched as a part of a batch of processes by pAntler, but
may also be launched from the command line by the user. The basic command line usage for the
uSimMarine application is the following:

Listing 38 - Command line usage for the uSimMarine application.

0 Usage: uSimMarine file.moos [OPTIONS]

1

2 Options:

3 --alias=<ProcessName>

4 Launch uSimMarine with the given process name

5 rather than uSimMarine.

6 --example, -e

7 Display example MOOS configuration block.

8 --help, -h

9 Display this help message.

10 --version,-v

11 Display the release version of uSimMarine.

12.1.5 An Example MOOS Configuration Block

As of MOOS-IvP Release 4.2, most if not all MOOS apps are implemented to support the -e

or --example command-line switches. To see an example MOOS configuration block, enter the
following from the command-line:

105

$ uSimMarine -e

This will show the output shown in Listing 39 below.

Listing 39 - Example configuration of the uSimMarine application.

0 ===

1 uSimMarine Example MOOS Configuration

2 ===

3 Blue lines: Default configuration

4 Magenta lines: Non-default configuration

5

6 ProcessConfig = uSimMarine

7 {

8 AppTick = 4

9 CommsTick = 4

10

11 start_x = 0

12 start_y = 0

13 start_heading = 0

14 start_speed = 0

15 start_depth = 0

16 start_pos = x=0, y=0, speed=0, heading=0, depth=0

17

18 force_x = 0

19 force_y = 0

20 force_theta = 0

21 force_vector = 0,0 // heading, magnitude

22

23 buoyancy_rate = 0.025 // meters/sec

24 max_acceleration = 0 // meters/sec^2

25 max_deceleration = 0.5 // meters/sec^2

26 max_depth_rate = 0.5 // meters/sec

27 max_depth_rate_speed = 2.0 // meters/sec

28

29 sim_pause = false // or {true}

30 dual_state = false // or {true}

31 thrust_reflect = false // or {true}

32 thrust_factor = 20 // range [0,inf)

33 turn_rate = 70 // range [0,100]

34 thrust_map = 0:0, 20:1, 40:2, 60:3, 80:5, 100:5

35 }

12.2 Setting the Initial Vehicle Position, Pose and Trajectory

The simulator is typically configured with a vehicle starting position, pose and trajectory given by
the following five configuration parameters:

• START X

• START Y

• START HEADING

• START SPEED

106

• START DEPTH

The position is specified in local coordinates in relation to a local datum, or (0, 0) position. This
datum is specified in the .moos file at the global level. The heading is specified in degrees and
corresponds to the direction the vehicle is pointing. The initial speed and depth by default are
zero, and are often left unspecified in configuration. Alternatively, the same five parameters may
be set with the START POS parameter as follows:

START_POS = x=100, y=150, speed=0, heading=45, depth=0

The simulator can also be reset at any point during its operation, by posting to the MOOS variable
USM RESET. A posting of the following form will reset the same five parameters as above:

USM_RESET = x=200, y=250, speed=0.4, heading=135, depth=10

This has been useful in cases where the objective is to observe the behavior of a vehicle from several
different starting positions, and an external MOOS script, e.g., uTimerScript, is used to reset the
simulator from each of the desired starting states.

12.3 Propagating the Vehicle Speed, Heading, Position and Depth

The vehicle position is updated on each iteration of the uSimMarine application, based on (a) the
previous vehicle state, (b) the elapsed time since the last update, ∆T , (c) the current actuator
values, DESIRED RUDDER, DESIRED THRUST, and DESIRED ELEVATOR, and (d) several parameter settings
describing the vehicle model.

For simplicity, this simulator updates the vehicle speed, heading, position and depth in sequence,
in this order. For example, the position is updated after the heading is updated, and the new
position update is made as if the new heading were the vehicle heading for the entire ∆T . The
error introduced by this simplification is mitigated by running uSimMarine with a fairly high MOOS
AppTick value keeping the value of ∆T sufficiently small.

Propagating the Vehicle Speed

The vehicle speed is propagated primarily based on the current value of thrust, which is presumably
refreshed upon each iteration by reading the incoming mail on the MOOS variable DESIRED THRUST.
To simulate a small speed penalty when the vehicle is conducting a turn through the water, the new
thrust value may also be affected by the current rudder value, referenced by the incoming MOOS
variable DESIRED RUDDER. The newly calculated speed is also dependent on the previously noted
speed noted by the incoming MOOS variable NAV SPEED, and the settings to the two configuration
parameters MAX ACCELERATION and MAX DECELERATION.

The algorithm for updating the vehicle speed proceeds as:

1. Calculate vi(RAW), the new raw speed based on the thrust.
2. Calculate vi(TURN), an adjusted and potentially lower speed, based on the raw speed, vi(RAW),

and the current rudder angle, DESIRED RUDDER.

107

3. Calculate vi(FINAL), an adjusted and potentially lower speed based on vi(TURN), compared to
the prior speed. If the magnitude of change violates either the max acceleration or max
deceleration settings, then the new speed is clipped appropriately.

4. Set the new speed to be vi(FINAL), and use this new speed in the later updates on heading,
position and depth.

Step 1: In the first step, the new speed is calculated by the current value of thrust. In this case
the thrust map is consulted, which is a mapping from possible thrust values to speed values. The
thrust map is configured with the THRUST MAP configuration parameter, and is described in detail in
Section 12.5.

vi(RAW) = THRUST MAP(DESIRED THRUST)

Step 2: In the second step, the calculated speed is potentially reduced depending on the degree to
which the vehicle is turning, as indicated by the current value of the MOOS variable DESIRED RUDDER.
If it is not turning, it is not diminished at all. The adjusted speed value is set according to:

vi(TURN) = vi(RAW) ∗ (1− (
|RUDDER|

100
∗ TURN LOSS))

The configuration parameter TURN LOSS is a value in the range of [0, 1]. When set to zero, there is
no speed lost in any turn. When set to 1, there is a 100% speed loss when there is a maximum
rudder. The default value is 0.85.

Step 3: In the last step, the candidate new speed, vi(TURN) , is compared with the incoming vehicle
speed, vi−1. The elapsed time since the previous simulator iteration, ∆T , is used to calculate the
acceleration or deceleration implied by the new speed. If the change in speed violates either the
MAX ACCELERATION, or MAX ACCELERATION parameters, the speed is adjusted as follows:

vi(FINAL) =

vi−1 + (MAX ACCELERATION ∗∆T)

(vi(TURN)
− vi−1)

∆T > MAX ACCELERATION,

vi−1 − (MAX DECELERATION ∗∆T)
(vi−1 − vi(TURN)

)

∆T > MAX DECELERATION,

vi(TURN) otherwise.

Step 4: The final speed from the previous step is posted by the simulator as USM SPEED, and is used
the calculations of position and depth, described next.

Propagating the Vehicle Heading

The vehicle heading is propagated primarily based on the current RUDDER value which is refreshed
upon each iteration by reading the incoming mail on the MOOS variable DESIRED RUDDER, and the
elapsed time since the simulator previously updated the vehicle state, ∆T . The change in heading
my also be influenced by the THRUST value from the MOOS variable DESIRED THRUST, and may also
factor an external rotational force.

The algorithm for updating the new vehicle heading proceeds as:

108

1. Calculate ∆θi(RAW), the new raw change in heading influenced only by the current rudder
value.

2. Calculate ∆θi(THRUST), an adjusted change in heading, based on the raw change in heading,
∆θi(RAW), and the current THRUST value.

3. Calculate ∆θi(EXTERNAL), an adjusted change in heading considering external rotational force.
4. Calculate θi, the final new heading based on the calculated change in heading and the previous

heading, and converted to the range of [0, 359].

Step 1: In the first step, the new heading is calculated by the current RUDDER value:

∆θi(RAW) = RUDDER ∗ TURN RATE

100
∗∆T

The TURN RATE is an uSimMarine configuration parameter with the allowable range of [0, 100]. The
default value of this parameter is 70, chosen in part to be consistent with the performance of the
simulator prior to this parameter being exposed to configuration. A value of 0 would result in the
vehicle never turning, regardless of the rudder value.

Step 2: In the second step the influence of the current vehicle thrust (from the MOOS variable
DESIRED THRUST) may be applied to the change in heading. The magnitude of the change of heading
is adjusted to be greater when the thrust is greater than 50% and less when the thrust is less than
50%.

∆θi(THRUST) = θi(RAW) ∗ (1 +
|THRUST| − 50

50
)

The direction in heading change is then potentially altered based on the sign of the THRUST:

∆θi(THRUST) =

{
− ∆θi(THRUST) THRUST < 0,

∆θi(THRUST) otherwise.

Step 3: In the third step, the change in heading may be further influenced by an external rotational
force. This force, if present, would be read at the outset of the simulator iteration from either the
configuration parameter FORCE THETA, or dynamically from the MOOS variable USM FORCE THETA. The
FORCE THETA terms are a misnomer since they are expressed in degrees per second. The updated
value is calculated as follows:

∆θi(EXTERNAL) = θi(THRUST) + (FORCE THETA ∗∆T)

Step 4: In final step, the final new heading is set based on the previous heading and the change in
heading calculated in the previous three steps. If needed, the value of the new heading is converted
to its equivalent heading in the range [0, 359].

θi = heading360(θi−1 + ∆θi(EXTERNAL))

The simulator then posts this value to the MOOSDB as USM HEADING.

109

Propagating the Vehicle Position

The vehicle position is propagated primarily based on the newly calculated vehicle heading and
speed, the previous vehicle position, and the elapsed time since updating the previous vehicle
position, ∆T .

The algorithm for updating the new vehicle position proceeds as:

1. Calculate the vehicle heading and speed used for updating the new vehicle position, with the
heading converted into radians.

2. Calculate the new positions, xi and yi, based on the heading, speed and elapsed time.
3. Calculate a possibly revised new position, factoring in any external forces.

Step 1: In the first step, the heading value, θ̄, and speed value, v̄ used for calculating the new
vehicle position is set averaging the newly calculated values with their prior values:

v̄ =
(vi + vi−1)

2
(1)

θ̄ = atan2(s, c)

where s and c are given by:

s = sin(θi−1π/180) + sin(θiπ/180)

c = cos(θi−1π/180) + cos(θiπ/180)

The above calculation of the heading average handles the issue of angle wrap, i.e., the average of
359 and 1 is zero, not 180.

Step 2: The vehicle x and y position is updated by the following two equations:

xi = xi−1 + sin(θ̄) ∗ v̄ ∗∆T

yi = yi−1 + cos(θ̄) ∗ v̄ ∗∆T

The above is calculated keeping in mind the difference in convention used in marine navigation
where zero degrees is due North and 90 degrees is due East. That is, the mapping is as follows from
marine to traditional trigonometric convention: 0◦ → 90◦, 90◦ → 0◦, 180◦ → 270◦, 270◦ → 180◦.

Step 3: The final step adjusts the x, and y position from above, taking into consideration any
external force that may be present. This force includes both the force that may be directed from
the incoming MOOS variables as described in Section 12.4. The force components below are also
a misnomer since they are provided in units of meters per second.

xi = xi + EXTERNAL FORCE X ∗∆T (2)

yi = yi + EXTERNAL FORCE Y ∗∆T (3)

110

Propagating the Vehicle Depth

Depth change in uSimMarine is simulated based on a few input parameters. The primary parameter
that changes from one iteration to the next is the ELEVATOR actuator value, from the MOOS variable
DESIRED ELEVATOR. On any given iteration the new vehicle depth, zi, is determined by:

zi = zi−1 + (żi ∗∆t)

The new vehicle depth is altered by the depth change rate, żi, applied to the elapsed time, ∆t, which
is roughly equivalent to the AppTick interval set in the uSimMarine configuration block. The depth
change rate on the current iteration is determined by the vehicle speed as set in (1) and the ELEVATOR

actuator value, and by the following three vehicle-specific simulator configuration parameters that
allow for some variation in simulating the physical properties of the vehicle. The BUOYANCY RATE,
for simplicity, is given in meters per second where positive values represent a positively buoyant
vehicle. The MAX DEPTH RATE, and MAX DEPTH RATE SPEED parameters determine the function(s) shown
in Figure 26. The vehicle will have a higher depth change rate at higher speeds, up to some
maximum speed where the speed no longer affects the depth change rate. The actual depth change
rate then depends on the elevator and vehicle speed.

Figure 26: The relationship between the rate of depth change rate, given a current vehicle speed. Different elevator
settings determine unique curves as shown.

The value of the depth change rate, v̇i, is determined as follows:

żi = (
v̄

MAX DEPTH RATE SPEED
)2 ∗ ELEVATOR

100
∗ MAX DEPTH RATE + BUOYANCY RATE (4)

Both fraction components in 4 are clipped to [−1, 1]. When the vehicle is in reverse thrust and
has a negative speed, this equation still holds. However, a vehicle would likely not have a depth

111

change rate curve symetric between positive and negative vehicle speeds. By default the value
of BUOYANCY RATE is set to 0.025, slightly positively buoyant, MAX DEPTH RATE is set to 0.5, and
MAX DEPTH RATE SPEED is set to 2.0. The prevailing buoyancy rate may be dynamically adjusted
by a separate MOOS application publishing to the variable USM BUOYANCY RATE.

12.4 Simulation of External Forces

When the simulator updates the vehicle position as in equations (2) and (3), it factors a possible
external force in the x and y directions, in the term EXTERNAL FORCE X, and EXTERNAL FORCE X re-
spectively. The external force may have two distinct components; a force applied generally, and
a force applied due to a current field configured with an external file correlating force vectors to
local x and y positions. These forces may be set in one of three ways discussed next. Referring to
these parameters in terms of force is an admitted misnomer, since all units are given in meters per
second.

External X-Y Forces from Initial Simulator Configuration

An external force may be configured upon startup by either specifying explicitly the forces in the
x and y direction, or by specifying a force magnitude and direction. Figure 27 shows two external
forces each with the appropriate configuration using either the FORCE X and FORCE Y parameters or
the single FORCE VECTOR parameter:

Figure 27: External Force Vectors: Two force vectors each configured with either the FORCE X and FORCE Y configu-
ration parameters or their equivalent single FORCE VECTOR parameter.

If, for some reason, the user mistakenly configures the simulator with both configuration styles,
the configuration appearing last in the configuration block will be the prevailing configuration. If
uSimMarine is configured with these parameters, these external forces will be applied on the very
first iteration and all later iterations unless changed dynamically, as discussed next.

External X-Y Forces Received from Other MOOS Applications

External forces may be adjusted dynamically by other MOOS applications based on any crite-
ria wished by the user and developer. The uSimMarine application registers for the following
MOOS variables in this regard: USM FORCE X, USM FORCE Y, USM FORCE VECTOR, USM FORCE VECTOR ADD,

112

USM FORCE VECTOR MULT. The first three variables simply override the previously prevailing force, set
by either the initial configuration or the last received mail concerning the force.

By posting to the USM FORCE VECTOR MULT variable the magnitude of the prevailing vector may
be modified with a single multiplier such as:

USM_FORCE_VECTOR_MULT = 2
USM_FORCE_VECTOR_MULT = -1

The first MOOS posting above would double the size of the prevailing force vector, and the second
example would reverse the direction of the vector. The USM FORCE VECTOR ADD variable describes a
force vector to be added to the prevailing force vector. For example, consider the prevailing force
vector shown on the left in Figure 27, with the following MOOS mail received by the simulator:

USM_FORCE_VECTOR_ADD = "262.47, 15.796"

The resulting force vector would be the vector shown on the right in Figure 27. This interface opens
the door for the scripting changes to the force vector like the one below, that crudely simulate a
gust of wind in a given direction that builds up to a certain magnitude and dies back down to a
net zero force.

USM_FORCE_VECTOR_ADD = 137, 0.25

USM_FORCE_VECTOR_ADD = 137, 0.25

USM_FORCE_VECTOR_ADD = 137, 0.25

USM_FORCE_VECTOR_ADD = 137, 0.25

USM_FORCE_VECTOR_ADD = 137, 0.25

USM_FORCE_VECTOR_ADD = 137, -0.25

USM_FORCE_VECTOR_ADD = 137, -0.25

USM_FORCE_VECTOR_ADD = 137, -0.25

USM_FORCE_VECTOR_ADD = 137, -0.25

USM_FORCE_VECTOR_ADD = 137, -0.25

The above style script was described in the Section 9.7.2, where the uTimerScript utility was used
to simulate wind gusts in random directions with random magnitude. The USM FORCE * interface
may also be used by any third party MOOS application simulating things such as ocean or wind
currents. The uSimMarine application does have native support for simple simulation with current
fields as described next.

External X-Y Forces from a Current Field

CURRENT_FIELD = gulf_of_maine.cfd

CURRENT_FIELD_ACTIVE = true

<x-position>, <y-position>, <speed>, <direction>

113

12.5 The ThrustMap Data Structure

A thrust map is a data structure that may be used to simulate a non-linear relationship between
thrust and speed. This is configured in the uSimMarine configuration block with the THRUST MAP

parameter containing a comma-separated list of colon-separated pairs. Each element in the comma-
separated list is a single mapping component. In each component, the value to the left of the colon is
a thrust value, and the other value is a corresponding speed. The following is an example mapping
given in string form, and rendered in Figure 28.

THRUST_MAP = "-100:-3.5, -75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8, 100:5"

Figure 28: A Thrust Map: The example thrust map was defined by seven mapping points in the string ”-100:-3.5,
-75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8, 100:5”.

Automatic Pruning of Invalid Configuration Pairs

The thrust map has an immutable domain of [−100, 100], indicating 100% forward and reverse
thrust. Mapping pairs given outside this domain will simply be ignored. The thrust mapping must
also be monotonically increasing. This follows the intuition that more positive thrust will not result
in the vehicle going slower, and likewise for negative thrust. Since the map is configured with a
sequence of pairs as above, a pair that would result in a non-monotonic map is discarded. All maps
are created as if they had the pair 0:0 given explicitly. Any pair provided in configuration with
zero as the thrust value will ignored; zero thrust always means zero speed. Therefore, the following
map configurations would all be equivalent to the map configuration above and shown in Figure
28:

THRUST_MAP = -120:-5, -100:-3.5, -75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8, 100:5.0, 120:6

THRUST_MAP = -100:-3.5, -75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8, 90:4, 100:5.0

THRUST_MAP = -100:-3.5, -75:-3.2, -10:-2, 0:0, 20:2.4, 50:4.2, 80:4.8, 100:5.0

THRUST_MAP = -100:-3.5, -75:-3.2, -10:-2, 0:1, 20:2.4, 50:4.2, 80:4.8, 100:5.0

In the first case, the pairs "-120:-5" and "120:6" would be ignored since they are outside the
[−100, 100] domain. In the second case, the pair "90:4" would be ignored since its inclusion would

114

entail a non-monotonic mapping given the previous pair of "80:4.8". In the third case, the pair
"0:0" would be effectively ignored since it is implied in all map configurations anyway. In the fourth
case, the pair "0:1" would be ignored since a mapping from a non-zero speed to zero thrust is not
permitted.

Automatic Inclusion of Implied Configuration Pairs

Since the domain [−100, 100] is immutable, the thrust map is altered a bit automatically when
or if the user provides a configuration without explicit mappings for the thrust values of −100 or
100. In this case, the missing mapping becomes an implied mapping. The mapping 100:v is added
where v is the speed value of the closest point. For example, the following two configurations are
equivalent:

THRUST_MAP = -75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8

THRUST_MAP = -100:-3.2, -75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8, 100:4.8

A Shortcut for Specifying the Negative Thrust Mapping

For convenience, the mapping of positive thrust values to speed values can be used in reverse for
negative thrust values. This is done by configuring uSimMarine with THRUST REFLECT=true, which is
false by default. If THRUST REFLECT is false, then a speed of zero is mapped to all negative thrust
values. If THRUST REFLECT is true, but the user nevertheless provides a mapping for a negative thrust
in a thrust map, then the THRUST REFLECT directive is simply ignored and the thrust map is used
instead. For example, the following two configurations are equivalent:

THRUST_MAP = -100:-5, -80:-4.8, -50:-4.2, -20:-2.4, 20:2.4, 50:4.2, 80:4.8, 100:5

and

THRUST_MAP = 20:2.4, 50:4.2, 80:4.8, 100:5

THRUST_REFLECT = true

The Inverse Mapping - From Speed To Thrust

Since a thrust map only permits configurations resulting in a non-monotonic function, the inverse
also holds (almost) as a valid mapping from speed to thrust. We say ”almost” because there is
ambiguity in cases where there is one or more plateau in the thrust map as in:

THRUST_MAP = -75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8

In this case a speed of 4.8 maps to any thrust in the range [80, 100]. To remove such ambiguity, the
thrust map, as implemented in a C++ class with methods, returns the lowest magnitude thrust in
such cases. A speed of 4.8 (or 5 for that matter), would return a thrust value of 80. A speed of
−3.2 would return a thrust value of −75. The motivation for this way of disambiguation is that if
a thrust value of 80 and 100, both result in the same speed, one would always choose the setting
that conserves less energy. Reverse mappings are not used by the uSimMarine application, but may
be of use in applications responsible for posting a desired thrust given a desired speed, as with the
pMarinePID application.

115

Default Behavior of an Empty or Unspecified ThrustMap

If uSimMarine is configured without an explicit THRUST MAP or THRUST REFLECT configuration, the
default behavior is governed as if the following two lines were actually included in the uSimMarine

configuration block:

THRUST_MAP = 100:5

THRUST_REFLECT = false

The default thrust map is rendered in Figure 29.

Figure 29: The Default Thrust Map: This thrust map is used if no explicit configuration is provided.

This default configuration was chosen for its reasonableness, and to be consistent with the behavior
of prior versions of uSimMarine where the user did not have the ability to configure a thrust map.

116

13 The uSimBeaconRange Utility: Simulating Vehicle to Beacon
Ranges

The uSimBne application is a tool for simulating an on-board sensor that provides a range measure-
ment to a beacon where either (a) theiknows where it is but is trying to determine the position of
the beacon via a series of range measurements, or (b) the vehicle dooow where it is but is trying to
determine its own position based on the range measurements from one or more beacons at known
locat.pskiprange-only sensor may be one that responds to a query, e.g., an acoustic ping, with an
immediate reply, e.g. another acoustic ping or echo, which thnge from the source to the beacon is
determined by the time-of-flight of the message through the medium, e.g., the approxe speed ound
through water. This idea is shown below on the left. Alternatively, if the beacon emits its message
on a precise scheduwith a clprecisely synchronized with the vehicle clock, the range measurement
may be derived without requiring a separate query from the vehicle. This is the idea behind long
baseline acoustic navigation, [3–6]. This idea is shown below on the right.

Figure 30: Beacon Range Sensors: A vehicle determines its range to a beacon by either (a) emitting a query and
waiting for a reply, or (b) waiting for a message to be emitted on fixed schedule. In each case, the time-of-flight of
the message through the medium is used to calculate the range.

In the uSimBeaconRange application, the beacon and vehicle locations are known to the simulator,
and a tidy SBR RANGE REPORT message is sent to the vehicle(s) as a proxy to the actual range sensor
and calculations that would otherwise reside on the vehicle. The MOOS app may be configured to
have beacons provide a range report either (a) solicited with a range request, or (b) unsolicited.
One may also configure the range at which a range request will be heard, and the range at which
a range report will be heard. The app may be further configured to either (1) include the beacon
location and ID, or (2) not include the beacon location or ID.

Typical Simulator Topology

The typical module topology is shown in Figure 31 below. Multiple vehicles may be deployed in
the field, each periodically communicating with a shoreside MOOS community running a single
instance of uSimBeaconRange. Each vehicle regularly sends a node report noted by the simulator to
keep an updated calculation of each vehicle to each simulated beacon. When a beacon wants to
simulate a ping, or range request, it generates the SBR RANGE REQUEST message send to the shore.

117

After the simulator calculates the range, a reply message, SBR RANGE REPORT is sent to the vehicle.

Figure 31: Typical uSimBeaconRange Topology: The simulator runs in a shoreside computer MOOS commu-
nicty and is configured with the beacon locations. Vehicles accessing the simulator periodically send node reports to
the shoreside community. The simulator maintains a running estimate of the range between vehicles and beacons,
modulo latency. A vehicle simulates a ping by sending a range request to shore and receiving a range report in return
from the simulator.

If running a pure simulation (no deployed vehicles), both MOOS communities may simply be
running on the same machine configured with distinct ports. The pMOOSBridge application is shown
here for communication between MOOS communities, but there are other alternatives for inter-
community communication and the operation of uSimBeaconRange is not dependent on the manner
of inter-communication communications.

13.1 Overview of the uSimBeaconRange Interface and Configuration Options

The uSimBeaconRange application may be configured with a configuration block within a .moos

file. Its interface is defined by its publications and subscriptions for MOOS variables consumed
and generated by other MOOS applications. An overview of the set of configuration options and
interface is provided in this section.

13.1.1 Configuration Parameters of uSimBeaconRange

The following parameters are defined for uSimBeaconRange. A more detailed description is provided
in other parts of this section. Parameters having default values indicate so in parentheses below.

118

BEACON: Description of beacon location and properties.
DEFAULT BEACON FREQ: Frequency of unsolicited beacon broadcasts (”never”).

DEFAULT BEACON REPORT RANGE: Range at which a vehicle will hear a range report (100).
DEFAULT BEACON WIDTH: Width of beacons (meters) when rendered (4).
DEFAULT BEACON COLOR: Color of beacons when rendered (”red”).
DEFAULT BEACON SHAPE: Shape of beacons when rendered (”circle”).

PING PAYMENTS: How pings treated w.r.t. ping wait time (”upon response”).
GROUND TRUTH: If true, ground truth is also reported when noise is added.

PING WAIT: Mandatory number of seconds between successive vehicle pings.
REACH DISTANCE: Range at which a vehicle ping will be heard (100).

REPORT VARS: Determines variable name(s) used for range report (”short”).
RN ALGORITHM: Algorithm for adding random noise to range measurements.

VERBOSE: If true, verbose status message terminal output (false).

13.1.2 MOOS Variables Published by uSimBeaconRange

The primary output of uSimBeaconRange to the MOOSDB is posting of range reports, visual cues
for the range reports, and visual cues for the beacons themselves.

SBR RANGE REPORT: A report on the range from a particular beacon to a particular vehicle.
SBR RANGE REPORT NAMEJ: A report on the range from a particular beacon to vehicle NAMEJ.

VIEW MARKER: A description for visualizing the beacon in the field. (Section 13.3)
VIEW RANGE PULSE: A description for visualizing the beacon range report. (Section 13.3)

The range report format may vary depending on user configuration. Some examples:

SBR_RANGE_REPORT = "name=alpha,range=129.2,time=19473362764.169"

SBR_RANGE_REPORT = "name=alpha,range=129.2,id=23,x=54,y=90,time=19473362987.428"

SBR_RANGE_REPORT_ALPHA = "range=129.2,time=19473362999.761"

The vehicle name may be embedded in the MOOS variable name to facilitate distribution of report
messages to the appropriate vehicle with pMOOSBridge.

13.1.3 MOOS Variables Subscribed for by uSimBeaconRange

The uSimBeaconRange application will subscribe for the following four MOOS variables:

SBR RANGE REQUEST: A request to generate range reports for all beacons to all vehicles within
range of the beacon.

NODE REPORT: A report on a vehicle location and status.
NODE REPORT LOCAL: A report on a vehicle location and status.

119

13.1.4 Command Line Usage of uSimBeaconRange

The uSimBeaconRange application is typically launched as a part of a batch of processes by pAntler,
but may also be launched from the command line by the user. The command line options may be
shown by typing "uSimBeaconRange --help":

Listing 40 - Command line usage for the uSimBeaconRange tool.

0 Usage: uSimBeaconRange file.moos [OPTIONS]

1

2 Options:

3 --alias=<ProcessName>

4 Launch uSimBeaconRange with the given process

5 name rather than uSimBeaconRange.

6 --example, -e

7 Display example MOOS configuration block

8 --help, -h

9 Display this help message.

10 --verbose=Boolean (true/false)

11 Display diagnostics messages. Default is true.

12 --version,-v

13 Display the release version of uSimBeaconRange.

13.1.5 An Example MOOS Configuration Block

As of MOOS-IvP Release 4.2, most if not all MOOS apps are implemented to support the -e

or --example command-line switches. To see an example MOOS configuration block, enter the
following from the command-line:

$ uSimBeaconRange -e

This will show the output shown in Listing 41 below.

Listing 41 - Example configuration of the uSimBeaconRange application.

0 ===

1 uSimBeaconRange Example MOOS Configuration

2 ===

3 Blue lines: Default configuration

4 Magenta lines: Non-default configuration

5

6 {

7 AppTick = 4

8 CommsTick = 4

9

10 // Configuring aspects of vehicles in the sim

11 reach_distance = default = 200 // or {nolimit}

12 reach_distance = henry = 40 // meters

13 ping_wait = default = 30 // seconds

14 ping_wait = henry = 120

15 ping_payments = upon_response // or {upon_receipt, upon_request}

16

17 // Configuring manner of reporting

18 report_vars = short // or {long, both}

120

19 ground_truth = true // or {false}

20 verbose = true // or {false}

21

22 // Configuring default beacon properties

23 default_beacon_shape = circle // or {square, diamond, etc.}

24 default beacon_color = orange // or {red, green, etc.}

25 default_beacon_width = 4

26 default_beacon_report_range = 100

27 default_beacon_freq = never // or [0,inf]

28

29 // Configuring Beacon properties

30 beacon = x=200, y=435, label=01, report_range=45

31 beacon = x=690, y=205, label=02, freq=90

32 beacon = x=350, y=705, label=03, width=8, color=blue

33

34 // Configuring Artificial Noise

35 rn_algorithm = uniform,pct=0 // pct may be in [0,1]

36 }

13.2 Using and Configuring the uSimBeaconRange Utility

The uSimBeaconRange application is configured primarily with a set of beacons, and a policy for
generating range reports to one or more simulated vehicles. The reports may be sent to the vehicles
upon a query (solicited) or may be sent unsolicited based on a configured broadcast schedule for
each beacon. The possible simulator configuration arrangements are explored by first considering
a simple case shown in Figure 32 below, representing a vehicle navigating with three beacons.

Figure 32: Simulated LBL Beacons: Three beacons are simulated, labelled 01, 02, and 03. The vehicle periodically
issues a query to which the beacons immediately reply. The uSimBeaconRange application handles the queries and
generates the range reports sent to each vehicle. The growing circles rendered around the vehicle and beacons
represent the generation of the range query and range reports respectively.

121

The configuration for the uSimBeaconRange is shown in Listing 42 below. The three beacons are
configured in lines 19-21. The configuration on line 7 indicates that a beacon query will be heard
regardless of the range between the vehicle and the beacon. In the other direction, the range report
from the beacon will only be heard if the vehicle is within 100 meters. Line 8 indicates that ping
or range request will be honored by the simulator at most once every 30 seconds, and this clock is
reset each time a range request is honored by the simulator with the configuration on line 9.

Listing 42 - Example configuration of the uSimBeaconRange application.

1 ProcessConfig = uSimBeaconRange

2 {

3 AppTick = 4 // Standard MOOSApp configurations

4 CommsTick = 4

5

6 // Configuring aspects of the vehicles

7 reach_distance = default = nolimit

8 ping_wait = 30

9 ping_payments = upon_accept

10

11 report_vars = short

12

13 default_beacon_freq = never // Only on request (ping)

14 default_beacon_shape = circle

15 default_beacon_color = orange

16 default_beacon_width = 5

17 default_beacon_report_range = 100

18

19 beacon = label=01, x=200, y=0

20 beacon = label=02, x=400, y=-200

21 beacon = label=03, x=0, y=-200, color=red, shape=triangle, report_range=80

22 }

The three beacons in this example are configured on lines 19-21 with unique labels and locations.
Each beacon has additional properties, such as its shape, color and width when rendered. Default
values for these properties are given in lines 14-16, but may be overridded for a particular beacon
as on line 22.

The key configuration line in this example is on line 13 which indicates the beacons by default
never generate an unsolicited range report. Reports are only generated upon request. In this
example, the simulated vehicle would receive successive groups of SBR RANGE REPORT postings from all
three simulated beacons, each time the vehicle posts a SBR RANGE REQUEST message to the MOOSDB.
This example is runnable in the indigo example mission distributed with the MOOS-IvP source
code and described a bit later in Section 13.4.

13.2.1 Configuring the Beacon Locations and Properties

One or more beacons may be configured by the BEACON configuration parameter provided in the
uSimBeaconRange configuration block of the .moos file. Each beacon is configured with a line:

BEACON = <configuration>

122

The <configuration> component is a comma-separated list of parameter=value pairs, with the
following possible parameters: x, y, label, freq, shape, width, color, and query range. The following
are typical examples:

beacon = x=200, y=260, label=03, freq=10

beacon = x=-40, y=150, label=04, freq=5:15, color=red, shape=circle, width=4, report_range=200

The x and y parameters specify the beacon locations in local coordinates. Like several other MOOS
applications, the uSimBeaconRange app looks for a global parameter in the .moos configuration
file naming the position of the datum, or 0,0 position in latitude, longitude coordinates. The
label parameter provides a unique identifier for the beacon. If a beacon entry is provided using a
previously used label, the new beacon will overwrite the prior beacon in the simulator. If no label is
provided, an automatic label will be generated equivalent to the index of the new beacon. The freq

parameter specifies, in seconds, how often unsolicited range reports are generated for each beacon.
A simple numerical value may be given, or a colon-separated pair of values as shown above may
be used to specify a uniformly random interval of possible durations. The duration between posts
will be reset after each post. The report range parameter specifies the distance, in meters, that a
vehicle must be to hear a range report generated by a beacon. The shape parameter indicates the
shape used by applications like pMarineViewer when rendering the beacon. The uSimBeaconRange

application generates a VIEW MARKER post to the MOOSDB for each beacon, once upon startup of
the simulator. The VIEW MARKER structure and possible shapes are described in Section 3.4.2. The
color parameter specifies the color to be used when rendering the beacon. Legal color strings are
described in Appendix B. The width parameter is used to indicate the width, in meters, when
rendering the beacon.

For convenience, default values for several of the above properties may be provided with the
following five supported configuration parameters:

default_beacon_report_range = 100

default_beacon_shape = circle

default_beacon_color = orange

default_beacon_width = 4

default_beacon_freq = never

The above configuration values also represent all the default values. A beacon configuration that
includes any of the above five parameters explicitly, will override any default values.

13.2.2 Unsolicited Beacon Range Reports

The simulator may be configured to have all its beacons periodically generate a range report to all
vehicles within range. The schedule of reporting may be uniform across all beacons, or individually
set for each beacon. The interval of time between reports may also be set to vary according to a
uniformly random time interval. By default, beacons are configured to never generate unsolicited
range reports unless their frequency parameter is set to something else besides the default value of
"never". The default value for all beacons may be configured with the following parameter in the
uSimBeaconRange configuration block with the following:

default_beacon_freq = 120

123

The parameter value is given in seconds. To configure an interval to vary randomly on each post
within a given range, e.g., somewhere between one and two minutes, the following may be used
instead:

default_beacon_freq = 60:120

To configure the simulator to never generate an unsolicited range report, i.e., only solicited reports,
use the following:

default_beacon_freq = never

Upon each range report post to the MOOSDB, the interval until the next post is recalculated. The
beacon schedule may also be configured to be unique to a given beacon. The beacon configuration
line accepts the freq parameter as described earlier in Section 13.2.1. The configuration provided
for an individual beacon overrides the default frequency configuration.

Once a beacon has generated a report, it will not generate another unsolicited report until after
the prevailing time interval has passed. However, if the simulator detects that the beacon has been
solicited for a range report via an explicit range request from a nearby vehicle, a range report may
be generated immediately. In this case the clock counting down to the beacon’s next unsolicited
report is reset.

13.2.3 Solicited Beacon Range Reports

The uSimBeaconRange application accepts requests from vehicles, and may or may not generate one
or more range reports for beacons within range of the vehicle making the request. In short, things
operate like this: (a) a range request is received by uSimBeaconRange through its mailbox on the
variable RANGE REQUEST, (b) a determination is made as to whether the request is within range of
the beacon and whether the request is allowed based on limits on the frequency of range requests,
(c) a range report is generated and posted to the variable SBR RANGE REPORT. The following is an
example of the range request format:

SBR_RANGE_REQUEST = "name=charlie"

Note that if a vehicle generates a range request triggering a range report from a beacon, the range
report is sent to all vehicles within range of the beacon. Presumably the simulator has also received,
at some point in the past, a node report, typically generated from the pNodeReporter application
(Section 10) running on the vehicle. So the simulator not only knows which vehicle is making the
range request, but also where that vehicle is located. It needs the vehicle location to determine the
range between the vehicle and beacon, to generate the requested range report. The simulator also
uses this range information to decide if it wants regard the beacon as being close enough to hear
the request, and whether the vehicle is close enough to the beacon to hear the report.

13.2.4 Limiting the Frequency of Vehicle Range Requests

From the perspective of operating a vehicle, one may ask: why not request a range report from
all beacons as often as possible? There may be reasons why this is not feasible outside simulation.

124

Limits may exist due to power budgets of the vehicle and/or beacons, and there may be prevailing
communications protocols that make it at least impolite to be pushing range requests through a
shared communications medium.

To reflect this limitation, the uSimBeaconRange application may be configured to limit the fre-
quency in which a vehicle’s range request (or ping) will be honored with a range report reply. By
default this frequency is set to once every 30 seconds for all vehicles. The default for all vehicles
may be changed with the following configuration in the .moos file:

PING_WAIT = default = 60

If the time interval as above is set to 60 seconds, what happens if a vehicle requests a range report
40 seconds after its previous request? Is it simply ignored, needing to wait another 20 seconds?
Or is the clock reset to zero forcing the vehicle to wait 60 seconds before a ping is honored? By
default, the former is the case, but the simulator may be configured to the more draconian option
with:

PING_PAYMENTS = upon_request

Suppose the minimum time interval has elapsed, but the querying/pinging vehicle is too far out of
range from any beacon to hear even a single range report. Will the result be that the clock is reset
to zero, forcing the vehicle to wait another 60 seconds before a query is honored? By default this
is the case, but the simulator may be configured to not reset the clock unless the querying vehicle
has received at least one range report for its query:

PING_PAYMENTS = upon_response

In short, the simulator configuration parameter, PING PAYMENTS, may be configured with one of three
options, "upon request", "upon response", or "upon accept", with the default being the latter.

13.2.5 Producing Range Measurements with Noise

In the default configuration of uSimBeaconRange, range reports are generated with the most precise
range estimate as possible, with the only error being due to the latency of the communications gen-
erating the range request and range report. Additional noise/error may be added in the simulator
for each range report with the following configuration parameter:

rn_algorithm = uniform,pct=0.12 // Values in the range [0,1]

Currently the only noise algorithm supported is the generation of uniformly random noise on the
range measurement. The noise level, θ, set with the parameter rn uniform pct, will generate a noisy
range from an otherwise exact range measurement r, by choosing a value in the range [θr, r + θr].
The range without noise, i.e., the ground truth, may also be reported by the simulator if desired
by setting the configuration parameter:

ground_truth = true

This will result in an additional MOOS variables posted, SBR RANGE REPORT GT, with the same format
as SBR RANGE REPORT, except the reported range will be given without noise.

125

13.2.6 Console Output Generated by uSimBeaconRange

Information regarding the startup of the uSimBeaconRange application may be monitored from an
open console window where uSimBeaconRange is launched. If the verbose setting is turned on, further
output is generated as the simulator progresses and receives range requests and generates range
reports. The verbose setting may be turned on from the command line, --verbose, or in the mission
file configuration block with verbose=true. Example output is shown below in Listing 43. Certain
startup information common across all MOOS applications can be found in lines 1-14, and lines
33-36 in the example below. The block of output in lines 16-31 provides startup feedback unique to
uSimBeaconRange. This cannot be turned off with the verbose setting, and should appear in blue in
the console window. The Figlog summary in lines 17-22 provides feedback on the the configuration
parameters provided in the uSimBeaconRange block of the mission file. Following this, e.g. in lines
23-30, a summary of the simulator model is given, showing the configured beacons, rendering hints,
and other simulator policies.

Listing 43 - Example uSimBeaconRange console output.

1 **

2 * *

3 * This is MOOS Client *

4 * c. P Newman 2001 *

5 * *

6 **

7

8 ---------------MOOS CONNECT-----------------------

9 contacting a MOOS server localhost:9000 - try 00001

10 Contact Made

11 Handshaking as "uSimBeaconRange"

12 Handshaking Complete

13 Invoking User OnConnect() callback...ok

14 --

15

16 Simulated Range Sensor starting...

17 ===

18 Figlog Summary:

19 Messages: (0)

20 Warnings: (0)

21 Errors: (0)

22 ===

23 SRS Model - # Beacons: 3

24 [0]:x=0,y=-200,label=03,color=orange,type=circle,width=4

25 [1]:x=400,y=-200,label=02,color=orange,type=circle,width=4

26 [2]:x=200,y=0,label=01,color=orange,type=circle,width=4

27 Default Beacon Color: orange

28 Default Beacon Shape: circle

29 Default Beacon Width: 4

30 NodeRecords:: 0

31 Simulated Range Sensor started.

32

33 uSimBeaconRange is Running:

34 AppTick @ 4.0 Hz

35 CommsTick @ 4 Hz

36 Time Warp @ 6.0

126

37

38 Received first NODE_REPORT for: indigo

39 ****************************

40 Range request received from: indigo

41 Elapsed time: 167.24879

42 Query accepted by uSimBeaconRange.

43 Range report sent from beacon[03] to vehicle[indigo]

44 Range report sent from beacon[02] to vehicle[indigo]

45 Range report sent from beacon[01] to vehicle[indigo]

46 ***********************

47 Unsolicited beacon reports:

48 Range report sent from beacon[03] to vehicle[indigo]

49 Range report sent from beacon[01] to vehicle[indigo]

50 **

Unless the verbose setting is turned on, the output ending on line 37 above should be the last
output written to the console for the duration of the simuator.

In the verbose mode, the simulator will produce event-based output as shown in the example
above beginning on line 38. The asterisks in lines 39, 46, and 50 are not merely visual separators.
An asterisk represents a single receipt of a NODE REPORT message. Receiving node reports is essential
for the operation of the simulator and this provides a bit of visual verification that this is occurring.
Presumably node reports are being received much more often than range requests and range reports
are handled, as is the case in the above example. The first time a node report is received for a
particular vehicle, an announcement is made as shown on line 38.

In addition to handling incoming node reports, on any given iteration, the simulator may also
handle an incoming range request, or may generate an unsolicited range report based on a beacon
schedule. Console output for incoming range requests may look like that shown in lines 40-45 above.
First the range request and the requesting vehicle is announced as online 40. The elapsed time
since the vehicle last made a range request is shown as on line 41. If the request is honored by the
simulator, this is indicated as shown on line 42. Otherwise a reason for denial may be shown. If the
query is accepted, range reports may be generated for one or more vehicles. For each such vehicle,
a line announcing the new report is generated, as in lines 43-45. On an iteration where unsolicited
range reports are generated, output similar to that shown in lines 47-49 will generated. For each
report, the beacon and receiving vehicle are named.

127

13.3 Interaction between uSimBeaconRange and pMarineViewer

The uSimBeaconRange application will post certain messages to the MOOSDB that may be sub-
scribed for by GUI based applications like pMarineViewer for visualizing the posting of SBR RANGE REPORT

and SBR RANGE REQUEST messages, as well as visualizing the beacon locations. A snapshot of the
pMarineViewer window is shown below, with one vehicle and several beacons.

Figure 33: Beacons in the pMarineViewer: The VIEW RANGE PULSE message is passed to pMarineViewer to render
unsolicited range reports (here in green), range requests from a vehicle (here in white), and solicited range reports
in response to a range requeste (here in pink). The viewer alse renders the beacons and their labels upon receiving
VIEW MARKER messages posted by the uSimBeaconRange application. The pulses are only momemtarily visible until
another VIEW RANGE PULSE message is received.

The VIEW MARKER Data Structure

The uSimBeaconRange application, upon startup, posts the beacon locations in the form of the
VIEW MARKER data structure. This MOOS variable is one of the default variables registered for by
the pMarineViewer application. The types of supported markers are described in Section 3.4.2.
The marker type, size and color are configurable in the uSimBeaconRange configuration block. The
user may use the variation in marker rendering to correspond to variation in beacon reporting or
querying characteristics.

The RANGE PULSE Data Structure

A range pulse message is used by the uSimBeaconRange application to convey visually the generation
of a range report, or the receipt of a range request. The pulse is rendered as a ring with a growing
radius having either the beacon or the vehicle at the center. A pulse eminating from a beacon

128

indicates a range report, and a pulse eminating from a vehicle indicates a range request. By default
different colors may be used for solicited and unsolicited range reports. In Figure 33 for example,
the green rings represent unsolicited reports, the white ring represents a range request made by
the vehicle, and the pink ring represents a response to the range request made by the one beacon
within range to the vehicle.

The RANGE PULSE message is a data structure implemented in the XYRangePulse class, and usually
passed through the MOOS variable VIEW RANGE PULSE with the following format:

VIEW_RANGE_PULSE = <pulse>

The <pulse> component is a series of comma-separated parameter=value pairs. The supported
parameters are: x, y, radius, duration, time, fill, fill color, label, edge color, and edge size.

The x and y parameters convey the center of the pulse. The radius parameter indicates the
radius of the circle at its maximum. The duration parameter is the number of seconds the pulse
will be rendered. The pulse will grow its radius linearly from zero meters at zero seconds to radius

meters at duration seconds. The fill parameter is in the range [0, 1], where 0 is full transparency
(clear) and 1 is fully opaque. The pulse transparency increases linearly as the range ring is rendered.
The starting transparency at radius = 0 is given by the fill parameter. The transparency at the
maximum radius is zero. The fill color parameter specifies the color rendered to the internal part
of the range pulse. The choice of legal colors is described in Appendix B. The label is a string
that uniquely identifies the range instance to consumers like pMarineViewer. As with other objects
in pMarineViewer, if it receives an object the same label and type as one previously received, it will
replace the old object with the new one in its memory. The edge color parameter describes the
color of the ring rendered in the range pulse. The edge size likewise describes the line width of the
rendered ring. The time parameter indicates the UTC time at which the range pulse object was
generated.

Below is an example string representing a range pulse. Each field, with the exception of the
x, y position, also indicates the default values if left unspecified:

VIEW_RANGE_PULSE = x=-40,y=-150,radius=40,duration=15,fill=0.25,fill_color=green,label=04

edge_color=green,time=3892830128.5,edge_size=1

Exercise 13.1: Poking a RangePulse for visualizing in pMarineViewer.

• Try running the Alpha mission described in [2]. The uPokeDB tool is described in Section 8.

• Poke the MOOSDB with:
$ uPokeDB alpha.moos VIEW RANGE PULSE="x=100,y=-50,radius=40,duration=15,fill=0.25,

fill color=green,label=04,time=@MOOSTIME"

A range pulse should appear in the viewer 100 meters East and 50 meters South of the

vechicle’s starting position. Note the special macro @MOOSTIME, which uPokeDB will

expand to the UTC time at which the poke was made.

129

13.4 The Indigo Example Mission Using uSimBeaconRange

The indigo mission is distributed with the MOOS-IvP source code and contains a ready example
of the uSimBeaconRange application, configured with three beacons acting as long baseline (LBL)
beacons as described at the beginning of Section 13.2. Assuming the reader has downloaded the
source code available at www.moos-ivp.org and built the code according to the discussion in Section
1.4, the indigo mission may be launched by:

$ cd moos-ivp/ivp/missions/s9_indigo/
$./launch.sh 10

The argument, 10, in the line above will launch the simulation in 10x real time. Once this launches,
the pMarineViewer GUI application should launch and the mission may be initiated by hitting the
DEPLOY button. The vehicle will traverse a survey pattern over the rectangular operation region
shown in Figure 32, periodically generating a range request to the three beacons. With each range
request, a white range pulse should be visible around the vehicle. Almost immediately afterwards,
a range report for each beacon is generated and a red range pulse around each beacon is rendered.
The snapshot in Figure 32 depicts a moment in time where the range report visual pulses are
beginning to grow around the beacons and the range request visual pulse is still visible around the
one vehicle.

How does the simulated vehicle generate a range request? In practice a user may implement
an intelligent module to reason about when to generate requests, but in this case the uTimerScript

application is used by creating a script that repeats endlessly, generating a range request once
every 25-35 seconds. The script is also conditioned on (NAV SPEED > 0), so the pinging doesn’t
start until the vehicle is deployed. The configuration for the script can be seen in the uTimerScript

configuration block in the indigo.moos file. More on the uTimerScript application can be found in
Section 9.

Examining the Log Data from the Indigo Mission

After the launch script above has launched the simulation, the script should leave the console
user with the option to “Exit and Kill Simulation” by hitting the ’2’ key. Once the vehicle has
been deployed and traversed to one’s satisfaction, exit the script. A log directory should have
been created by the pLogger application in the directory where the simulation was launched. The
directory name should be begin with MOOSLog with the remainder of the directory name composed
from the timestamp of the launch.

Let’s take a look at some of the data related to the simulation and uSimBeaconRange in particular.
A dump of the entire file reveals a deluge of information. To look at the information relevant to the
uSimBeaconRange application, the file is pruned with the aloggrep tool described in Section 16.5:

$ aloggrep MOOSLog_21_2_2011_____22_32_48.alog uSimBeaconRange uTimerScript

This produces a subset of the alog file similar to that shown in Listing 44, showing only log
entries made by either the uSimBeaconRange application, or the uTimerScript application which
generated all the range requests as described above. The first three posts made to the MOOSDB

130

by uSimBeaconRange are the VIEW MARKER posts representing a visual cue for the pMarineViewer

application to render the three beacons.

Listing 44 - A subset of the data logged from the Indigo example mission’s alog file.
%%%

%% LOG FILE: ./MOOSLog_22_2_2011_____17_27_06/MOOSLog_22_2_2011_____17_27_06.alog

%% FILE OPENED ON Tue Feb 22 17:27:06 2011

%% LOGSTART 23371445284.8

%%%

55.697 VIEW_MARKER uSimBeaconRange x=0,y=-200,label=03,color=orange,type=circle,width=4

55.698 VIEW_MARKER uSimBeaconRange x=400,y=-200,label=02,color=orange,type=circle,width=4

55.698 VIEW_MARKER uSimBeaconRange x=200,y=0,label=01,color=orange,type=circle,width=4

100.663 SBR_RANGE_REQUEST uTimerScript name=indigo

100.846 VIEW_RANGE_PULSE uSimBeaconRange x=-97.65,y=-64.84,radius=50,duration=6,...

100.846 SBR_RANGE_REPORT uSimBeaconRange vname=indigo,range=166.7446,id=03,time=23371445385.636

100.846 VIEW_RANGE_PULSE uSimBeaconRange x=0,y=-200,radius=40,duration=15,...

100.846 SBR_RANGE_REPORT uSimBeaconRange vname=indigo,range=515.6779,id=02,time=23371445385.636

100.846 VIEW_RANGE_PULSE uSimBeaconRange x=400,y=-200,radius=40,duration=15,...

100.847 SBR_RANGE_REPORT uSimBeaconRange vname=indigo,range=304.6305,id=01,time=23371445385.636

100.847 VIEW_RANGE_PULSE uSimBeaconRange x=200,y=0,radius=40,duration=15,...

160.419 SBR_RANGE_REQUEST uTimerScript name=indigo

160.597 VIEW_RANGE_PULSE uSimBeaconRange x=-197.96,y=-129.16,radius=50,duration=6,...

160.597 SBR_RANGE_REPORT uSimBeaconRange vname=indigo,range=210.2533,id=03,time=23371445445.392

160.597 VIEW_RANGE_PULSE uSimBeaconRange x=0,y=-200,radius=40,duration=15,...

160.597 SBR_RANGE_REPORT uSimBeaconRange vname=indigo,range=602.1416,id=02,time=23371445445.392

160.597 VIEW_RANGE_PULSE uSimBeaconRange x=400,y=-200,radius=40,duration=15,...

160.597 SBR_RANGE_REPORT uSimBeaconRange vname=indigo,range=418.3951,id=01,time=23371445445.392

160.597 VIEW_RANGE_PULSE uSimBeaconRange x=200,y=0,radius=40,duration=15,...

The first range request is generated at time 100.663 by the uTimerScript. The uSimBeaconRange

application receives this mail and posts a range pulse at time 100.846 conveying the range request
from the vehicle, e.g., the white circle in Figure 32. The range request is met immediately and two
posts are generated for each beacon. The VIEW RANGE PULSE message indicates the simulator has
generated a range report for the beacon (the red circle in Figure 32. The SBR RANGE REPORT message
is the actual range report to be used by the vehicle as it sees fit.

13.4.1 Generating Range Report Data for Matlab

The log files generated as in Listing 44 above may processed to form a table of values suitable for
Matlab processing. The alog2rng tool may be run on an alog file from the command line:

$ alog2rng MOOSLog_21_2_2011_____22_32_48.alog

This will generate a table of data like that below. The left column is the timestamp from the log file.
The next N columns are the range measurements from each beacon. And the last three columns
are the “ground truth” vehicle position and heading. The last three columns may be excluded with
the --nav=false switch on the command line.

Time 03 02 01 NAV_X NAV_Y NAV_HDG

100.846 166.7446 515.6779 304.6305 -99.371 -65.917 238.000

160.597 210.2533 602.1416 418.3951 -198.538 -130.397 197.456

224.844 163.4205 558.5143 433.6937 -155.744 -248.991 159.000

The alog2rng tool is part of the Alog-Toolbox described in Section 16 along with other tools for
examining and modifying alog files generated by pLogger.

131

14 The uSimContactRange Utility: Detecting Contact Ranges

The uSimContactRange application is a tool for simulating range measurements to off-board con-
tacts, as a proxy for an on-board active sonar sensor. The range-only measurements are provided
conditionally, depending on the range between the pinging vehicle and the contact. The simulator
may optionally be configured to provide range measurements with noise.

Figure 34: Simulated Active Sonar: A vehicle determines its range to another vehicle by producing a simulated
sonar ping (a range request to the simulator), and the simulator conditionally responds to the querying vehicle with
a report containing the range to nearby vehicles. All vehicles send frequent and regular node reports to the simulator
so the simulator can report the range between any two vehicles at any time. The simulator may or may not reply to
the range request depending on the range between the two vehicles and thresholds configured by the user.

In the uSimContactRange application, the beacon and vehicle locations are known to the simulator,
and a tidy RANGE REPORT message is sent to the vehicle(s) as a proxy to the actual range sensor
and calculations that would otherwise reside on the vehicle. The MOOS app may be configured to
have beacons provide a range report either (a) solicited with a range request, or (b) unsolicited.
One may also configure the range at which a range request will be heard, and the range at which
a range report will be heard. The app may be further configured to either (1) include the beacon
location and ID, or (2) not include the beacon location or ID.

Typical Simulator Topology

The typical module topology is shown in Figure 35 below. Multiple vehicles may be deployed in
the field, each periodically communicating with a shoreside MOOS community running a single
instance of uSimContactRange. Each vehicle regularly sends a node report noted by the simulator
to keep an updated calculation of each vehicle to each simulated beacon. When a vehicle wants to
simulate a ping, or range request, it generates the SIMCOR RANGE REQUEST message sent to the shore.
After the simulator calculates the range, a reply message, SIMCOR RANGE REPORT message is sent to
the vehicle, using pMOOSBridge or similar app.

132

Figure 35: Typical uSimContactRange Topology: The simulator runs in a shoreside computer MOOS com-
munity. All deployed vehicles periodically send node reports to the shoreside community. The simulator maintains
a running estimate of the range between vehicles, modulo latency. A vehicle simulates a ping by sending a range
request to shore and receiving a range report in return from the simulator. The simulator also posts visual artifacts
(VIEW RANGE PULSE messages) read by the pMarineViewer app optionally running shoreside.

If running a pure simulation (no physically deployed vehicles), both MOOS communities may simply
be running on the same machine configured with distinct ports. The pMOOSBridge application is
shown here for communication between MOOS communities, but there are other alternatives for
inter-community communication and the operation of uSimContactRange is not dependent on the
manner of inter-communication communications.

14.1 Overview of the uSimContactRange Interface and Configuration Options

The uSimContactRange application may be configured with a configuration block within a .moos

file. Its interface is defined by its publications and subscriptions for MOOS variables consumed
and generated by other MOOS applications. An overview of the set of configuration options and
interface is provided in this section.

14.1.1 Configuration Parameters of uSimContactRange

The following parameters are defined for uSimContactRange. A more detailed description is provided
in other parts of this section. Parameters having default values indicate so in parentheses below.

133

REACH DISTANCE: Distance out to which the pinging vehicle will be heard (100).
REPLY DISTANCE: Distance out to which the pinged vehicle will be heard (100).

PING WAIT: Minimum seconds enforced between pings (30).
PING COLOR: Visual preference: color of initiating ping message (white).
REPLY COLOR: Visual preference: color of replying message (chartreuse).
RN ALGORITHM: Algorithm for adding random noise to the range measurement
REPORT VARS: Determines variable name(s) used for range report (”short”).

VERBOSE: If true, verbose status message terminal output (false).

14.1.2 MOOS Variables Published by uSimContactRange

The primary output of uSimContactRange to the MOOSDB is posting of range reports and visual
cues for the range reports.

SIMCOR RANGE REPORT: A report on the range from a particular vehicle to the pinging vehicle.
SIMCOR RANGE REPORT NAMEJ: A report on the range from a particular named NAMEJ, to the pinging

vehicle.
VIEW RANGE PULSE: A description for visualizing the beacon range report. (Section 13.3)

The range report format may vary depending on user configuration. Some examples:

SIMCOR_RANGE_REPORT = "name=alpha,range=129.2,time=19473362764.169"

SIMCOR_RANGE_REPORT = "name=alpha,range=129.2,target=jackal,x=54,y=90,time=19473362987.428"

SIMCOR_RANGE_REPORT_ALPHA = "range=129.2,time=19473362999.761"

The name of the vehicle requesting the report (generating the ping) may be embedded in the
MOOS variable name to facilitate distribution of report messages to the appropriate vehicle with
pMOOSBridge.

14.1.3 MOOS Variables Subscribed for by uSimContactRange

The uSimContactRange application will subscribe for the following four MOOS variables:

SIMCOR RANGE REQUEST: A request to generate range reports for all targets to all vehicles within
range of the target.

NODE REPORT: A report on a vehicle location and status.
NODE REPORT LOCAL: A report on a vehicle location and status.

14.1.4 Command Line Usage of uSimContactRange

The uSimContactRange application is typically launched as a part of a batch of processes by pAntler,
but may also be launched from the command line by the user. The command line options may be
shown by typing "uSimContactRange --help":

Listing 45 - Command line usage for the uSimContactRange tool.

134

0 Usage: uSimContactRange file.moos [OPTIONS]

1

2 Options:

3 --alias=<ProcessName>

4 Launch uSimContactRange with the given process

5 name rather than uSimContactRange.

6 --example, -e

7 Display example MOOS configuration block

8 --help, -h

9 Display this help message.

10 --version,-v

11 Display the release version of uSimContactRange.

14.2 Configuring the uSimContactRange Parameters

The uSimContactRange simulator has two range configuration parameters:

REACH_DISTANCE = default = <meters> // or "nolimit"

REPLY_DISTANCE = default = <meters> // or "nolimit"

The simulator uses these parameters to decide whether a ping (range request) will reach other
nearby vehicles. Two separate range parameters are used so that the simulator can support scenarios
where some vehicles have a more powerful sonar than others, and some targets are harder to detect
(absorb or deflect more energy) than others. Both parameters are given in meters.

When a range request is received by the simulator, it knows which vehicle is making the request
since the requesting vehicle’s name comprises the range request. For example:

MOOS Variable Community Value

------------- --------- -----

SIMCOR_RANGE_REQUEST archie name=archie

The simulator maintains a record of the location of all known vehicles, by receiving NODE REPORT

messages regularly from each vehicle known to the simulator. When a range request is made, the
simulator looks up the REACH DISTANCE for the requesting vehicle, and the REPLY DISTANCE for the
target vehicle and if the sum, REACH DISTANCE + REPLY DISTANCE is less than the actual present range
between the two vehicles, a range report is generated. For example:

MOOS Variable Community Value

------------- --------- -----

SIMCOR_RANGE_REPORT shoreside vname=archie,range=126.54,target=jackal,time=19656022406.44

If the user provides no configuration parameters, all vehicles will default to have the same reach
and reply distances of 100 meters. The default values may be overridden with something like:

REACH_DISTANCE = default = 120

REPLY_DISTANCE = default = 80

The above two lines, in effect, are the same as REACH DISTANCE = 100 and REPLY DISTANCE = 100.
Things become interesting when individual vehicles are given values different from the default.
Consider the more advantageously configured vehicle, victor, below:

135

REACH_DISTANCE = victor = 250

REPLY_DISTANCE = victor = 20

If either the reach or reply distance for a given pair of vehicles is set to nolimit, then a range report
will always be generated regardless of current range between the two vehicles. Future enhancements
to this simulator module may include the factoring of vehicle speed and relative bearing to one
another in the threshold determination of sending range reports.

14.3 Limiting the Frequency of Vehicle Range Requests

From the perspective of operating a vehicle, one may ask: why not request a range report (ping)
as often as possible? There may be reasons why this is not feasible outside simulation. Limits may
exist due to power budgets of the vehicle, and there may be prevailing protocols that make it at
least impolite to be frequently pinging.

To reflect this limitation, the uSimContactRange utility may be configured to limit the frequency
in which a vehicle’s range request (or ping) will be honored with a range report reply. By default
this frequency is set to once every 30 seconds for all vehicles. The default for all vehicles may be
changed with the following configuration in the .moos file:

PING_WAIT = default = 60

The limits for a particular vehicle may be set with a similar configuration line:

PING_WAIT = henry = 90

14.4 Producing Range Measurements with Noise

In the default configuration of uSimContactRange, range reports are generated with the most precise
range estimate as possible, with the only error being due to the latency of the communications gen-
erating the range request and range report. Additional noise/error may be added in the simulator
for each range report with the following configuration parameter:

rn_algorithm = uniform,pct=0.12 // Values in the range [0,1]

Currently the only noise algorithm supported is the generation of uniformly random noise on the
range measurement. The noise level, θ, set with the parameter rn uniform pct, will generate a noisy
range from an otherwise exact range measurement r, by choosing a value in the range [θr, r + θr].
The range without noise, i.e., the ground truth, may also be reported by the simulator if desired
by setting the configuration parameter:

ground_truth = true

This will result in an additional MOOS variables posted, SIMCOR RANGE REPORT GT, with the same
format as SIMCOR RANGE REPORT, except the reported range will be given without noise.

136

14.5 An Example MOOS Configuration Block

As of MOOS-IvP Release 4.2, most if not all MOOS apps are implemented to support the -e

or --example command-line switches. To see an example MOOS configuration block, enter the
following from the command-line:

$ uSimContactRange -e

This will show the output shown in Listing 46 below.

Listing 46 - Example configuration of the uSimContactRange application.

0 ===

1 uSimContactRange Example MOOS Configuration

2 ===

3 Blue lines: Default configuration

4 Magenta lines: Non-default configuration

5

6 ProcessConfig = uSimContactRange

7 {

8 AppTick = 4

9 CommsTick = 4

10

11 // Configuring aspects of the vehicles in the sim

12 reach_distance = default = 100 // in meters or {nolimit}

13 reply_distance = default = 100 // in meters or {nolimit}

14 ping_wait = default = 30 // in seconds

15

16 // Configuring manner of reporting

17 report_vars = short // or {long, both}

18 ground_truth = true // or {false}

19 verbose = true // or {false}

20

21 // Configuring visual artifacts

22 ping_color = white

23 reply_color = chartreuse

24

25 // Configuring Artificial Noise

26 rn_algorithm = uniform,pct=0

27 }

The console output uses color to discern default configurations from non-default configurations. Any
line rendered as a default configuration may be omitted without any net change to the configuration.

14.5.1 Console Output Generated by uSimContactRange

Information regarding the startup of the uSimContactRange application may be monitored from an
open console window where uSimContactRange is launched. If the verbose setting is turned on,
further output is generated as the simulator progresses and receives range requests and generates
range reports. The verbose setting may be turned on from the command line, --verbose, or in
the mission file configuration block with verbose=true. Example output is shown below in Listing
47. Certain startup information, common across all MOOS application,s can be found in lines

137

0-13. The block of output in lines 16-36 provides startup information specific to uSimContactRange.
This cannot be turned off with the verbose setting, and should appear in blue in the console
window. These lines convey the configuration settings of uSimContactRange read from the MOOS
configuration block like the one shown previously in Listing 46.

Listing 47 - Example uSimContactRange console output.
0 **

1 * *

2 * This is MOOS Client *

3 * c. P Newman 2001 *

4 * *

5 **

6

7 ---------------MOOS CONNECT-----------------------

8 contacting a MOOS server localhost:9200 - try 00001

9 Contact Made

10 Handshaking as "uSimContactRange"

11 Handshaking Complete

12 Invoking User OnConnect() callback...ok

13 --

14

15

16 Simulated Active Sonar starting...

17 ==

18 Acoustic Sonar Simulator Model:

19 ==

20 Default Reach Distance: 100

21 Default Reply Distance: 100

22 Default Ping Wait: 30

23 Random Noise Algorithm: uniform

24 Random Noise Uniform Pct: 0.04

25 Ping Color: white

26 Reply Color: chartreuse

27 Ground Truth Reporting: true

28 ReachMap:

29 VName: archie Dist: 190

30 ReplyMap:

31 VName: jackal Dist: 50

32 PingWaitMap:

33 VName: archie PingWait: 125

34 Contact Records: 0

35 ==

36 Simulated Active Sonar started.

37

38 uSimContactRange is Running:

39 AppTick @ 4.0 Hz

40 CommsTick @ 4 Hz

41 %*%**

42 ***

43 ***********************

44 Range request received from: archie

45 Elapsed time: 46.04512

46 Range Request accepted by uSimContactRange.

47 Range Request resets the clock for vehicle.

48 Range Report sent from targ vehicle[jackal] to receiver vehicle[archie]

49 DBPost: VIEW_RANGE_PULSE x=-40.53,y=-33.66,radius=50,duration=6,fill=,label=archie_ping,

50 edge_color=white,fill_color=white,time=10483324813.71,edge_size=1

51 DBPost: SIMCOR_RANGE_REPORT vname=archie,range=181.6211,target=jackal,time=10483324813.705

52 DBPost: SIMCOR_RANGE_REPORT_GT vname=archie,range=179.033,target=jackal,time=10483324813.705

53 DBPost: VIEW_RANGE_PULSE x=-186.18,y=-137.77,radius=40,duration=15,label=jackal_ping_reply,

54 edge_color=chartreuse,fill_color=chartreuse,time=10483324813.71

55 **

138

56 Range request received from: archie

57 Elapsed time: 31.61322

58 Denied: Range Request exceeds maximum ping frequency.

59 ***

60 Range request received from: archie

61 Elapsed time: 57.75229

62 Range Request accepted by uSimContactRange.

63 Range Request resets the clock for vehicle.

64 Range Report sent from targ vehicle[jackal] to receiver vehicle[archie]

65 DBPost: VIEW_RANGE_PULSE x=-140.04,y=-93.47,radius=50,duration=6,fill=,label=archie_ping,

66 edge_color=white,fill_color=white,time=10483324871.46,edge_size=1

67 DBPost: SIMCOR_RANGE_REPORT vname=archie,range=132.5609,target=jackal,time=10483324871.457

68 DBPost: SIMCOR_RANGE_REPORT_GT vname=archie,range=132.2973,target=jackal,time=10483324871.457

69 DBPost: VIEW_RANGE_PULSE x=-192.85,y=-214.77,radius=40,duration=15,label=jackal_ping_reply,

70 edge_color=chartreuse,fill_color=chartreuse,time=10483324871.46

71 **

Unless the verbose setting is turned on, the output ending on line 40 above should be the last
output written to the console for the duration of the simulator.

In the verbose mode, the simulator will produce event-based output as shown in the example
above beginning on line 41. The asterisks in lines 41-43 are not merely visual separators. An
asterisk represents a single receipt of a NODE REPORT message. Receiving node reports is essential
for the operation of the simulator and this provides a bit of visual verification that this is indeed
occurring. Presumably node reports are being received much more often than range requests and
range reports are handled, as is the case in the above example. The first time a node report is
received for a particular vehicle, rather than an asterisk output, an percent-sign, ’%’, is output
instead, as on line 41 for the two vehicles in this example.

In addition to handling incoming node reports, on any given iteration, the simulator may also
handle an incoming range request. Console output for incoming range requests may look like that
shown in lines 44-54 above. First the range request and the requesting vehicle is announced as
online 44. The elapsed time since the vehicle last made a range request is shown as on line 45. If
the request is honored by the simulator, this is indicated as shown on line 46. Otherwise a reason
for denial may be shown, as on line 58. If the request is accepted, range reports may be generated
for one or more vehicles. For each such vehicle, a line showing the new report is generated, as on
line 67.

If artificial noise is being applied by the simulator, e.g., as in line 26 in Listing 46, and the
ground truth parameter is set to true, then uSimContactRange will also generate a “ground truth”
report alongside the normal range report. This is indicated in the console output as in lines 52 and
68 above. This ground truth report may not be communicated to the vehicle, but may be used
later for post-mission analysis.

139

14.6 Interaction between uSimContactRange and pMarineViewer

The uSimContactRange application will post certain messages to the MOOSDB that may be sub-
scribed for by GUI based applications like pMarineViewer for visualizing the posting of SIMCOR RANGE REPORT

and SIMCOR RANGE REQUEST messages. A range pulse message is used by the uSimContactRange appli-
cation to convey visually the generation of a range report, or the receipt of a range request. The
pulse is rendered as a ring with a growing radius having the vehicle at the center. A pulse emanat-
ing By default different colors may be used for range requests and range reports. The RANGE PULSE

message is a data structure implemented in the XYRangePulse class, and usually passed through the
MOOS variable VIEW RANGE PULSE with the following format:

VIEW_RANGE_PULSE = <pulse>

The <pulse> component is a series of comma-separated parameter=value pairs. The supported
parameters are: x, y, radius, duration, time, fill, fill color, label, edge color, and edge size.

The x and y parameters convey the center of the pulse. The radius parameter indicates the
radius of the circle at its maximum. The duration parameter is the number of seconds the pulse
will be rendered. The pulse will grow its radius linearly from zero meters at zero seconds to radius

meters at duration seconds. The fill parameter is in the range [0, 1], where 0 is full transparency
(clear) and 1 is fully opaque. The pulse transparency increases linearly as the range ring is rendered.
The starting transparency at radius = 0 is given by the fill parameter. The transparency at the
maximum radius is zero. The fill color parameter specifies the color rendered to the internal part
of the range pulse. The choice of legal colors is described in Appendix B. The label is a string
that uniquely identifies the range instance to consumers like pMarineViewer. As with other objects
in pMarineViewer, if it receives an object the same label and type as one previously received, it will
replace the old object with the new one in its memory. The edge color parameter describes the
color of the ring rendered in the range pulse. The edge size likewise describes the line width of the
rendered ring. The time parameter indicates the UTC time at which the range pulse object was
generated.

Below is an example string representing a range pulse. Each field, with the exception of the
x, y position, label, and time, indicates the default values if left unspecified:

VIEW_RANGE_PULSE = x=-40,y=-150,radius=40,duration=15,fill=0.25,fill_color=green,label=04

edge_color=green,time=3892830128.5,edge_size=1

One further note to developers of other apps perhaps wishing to also generate a range pulse for
viewing - the recommended manner to generate a range pulse string is to create an instance of the
XYRangePulse class using the defined class interface. The string should be obtained by invoking the
serialization method for that class. This will better ensure compatibility as the software evolves.
The class is defined in lib geometry in the MOOS-IvP tree.

14.7 The Hugo Example Mission Using uSimContactRange

The hugo mission is distributed with the MOOS-IvP source code and contains a ready example of
the uSimContactRange application. Assuming the reader has downloaded the source code available
at www.moos-ivp.org and built the code according to the discussion in Section 1.4, the hugo mission
may be launched by:

140

$ cd moos-ivp/ivp/missions/m8_hugo/
$./launch.sh 10

The argument, 10, in the line above will launch the simulation in 10x real time. Once this launches,
the pMarineViewer GUI application should launch and the mission may be initiated by hitting the
DEPLOY button. Two vehicles should be visibly moving, one surface vehicle labeled "archie" and
one UUV labeled "jackal", as shown in Figure 36.

Figure 36: The Hugo Example Mission: The Hugo example mission involves two simulated vehicles. The first
vehicle is a surface vehicle, archie, traversing a lawnmower shaped search pattern. The second vehicle, is a UUV,
jackal, traversing a polygon pattern overlapping the first pattern. Periodically archie emits a ping (range request).
This example contains three distinct MOOS communities - one for each simulated vehicle, and one for the shoreside
community running uSimContactRange.

The surface vehicle will traverse a survey pattern over the region shown in Figure 36, periodically
generating a range request (ping). With each range request, a white range pulse should be visible
around the vehicle. Almost immediately afterwards, a range report for each neighboring vehicle
within range is generated and a green range pulse around each “target” vehicle is rendered. The
snapshot in Figure 36 depicts a moment in time where the range request visual pulses are around
both vehicles. The larger pulse around the surface vehicle indicates it was generated just prior to
the reply pulse around the UUV.

How does the simulated vehicle generate a range request? In practice a user may implement
an intelligent module to reason about when to generate requests, but in this case the uTimerScript

application is used by creating a script that repeats endlessly, generating a range request once
every 25-35 seconds. The script is also conditioned on (NAV SPEED > 0), so the pinging doesn’t

141

start until the vehicle is deployed. The configuration for the script can be seen in the uTimerScript

configuration block in the shoreside.moos file. More on the uTimerScript application can be found
in Section 9.

Examining the Log Data from the Hugo Mission

After the launch script above has launched the simulation, the script should leave the console
user with the option to “Exit and Kill Simulation” by hitting the ’2’ key. Once the vehicles have
been deployed and traversed to one’s satisfaction, exit the script. Three log directories should
have been created by three separate invocations of the pLogger application in the directory where
the simulation was launched. The three directories correspond to the three MOOS communities
participating in this simulation, and should have the corresponding prefixes, LOG ARCHIE, LOG JACKAL,
and LOG SHORESIDE, with the remainder of the directory names composed from the timestamp of
the launch.

Let’s take a look at some of the data related to the simulation and uSimContactRange in partic-
ular. The uSimContactRange app is part of the shoreside community (see Figure 35). The shoreside
log file resides in the LOG SHORESIDE * directory, and has the .alog suffix. A dump of the entire
file reveals a deluge of information. To look at the information relevant to the uSimContactRange

application, the file is pruned with the aloggrep tool described in Section 16.5:

$ aloggrep LOG_SHORESIDE_12_7_2011_____08_12_05.alog uSimContactRange uTimerScript

This produces a subset of the alog file similar to that shown in Listing 48, showing only log entries
made by either the uSimContactRange application, or the uTimerScript application which generated
all the range requests as described above.

Even though the below log file represents the logged data from the shoreside MOOS community,
it also contains entries of postings bridged from other communities. Upon each range request
generated by uTimerScript running on the archie vehicle, it its bridged to the shoreside community
and logged as SIMCOR RANGE REQUEST entries shown below. If the simulator decides to honor the range
request, it posts a VIEW RANGE PULSE message which can be seen below with the label "archie ping".
If the range request is honored by the simulator it also generates the SIMCOR RANGE REPORT message.
If the simulator is configured to add random noise to the range measurements, and to report
ground truth alongside the noisy measurements, the simulator will also post SIMCOR RANGE REPORT GT

message as shown below.

In cases where the range request is not honored by the simulator (perhaps because it violated
the minimum wait time between pings), the SIMCOR RANGE REQUEST message is simply logged by the
logger and ignored by the simulator. See the entry at timestamp 104.761 below.

Listing 48 - A subset of the Shoreside log file in the Hugo example mission.

%%%

%% LOG FILE: ./LOG_SHORESIDE_12_7_2011_____08_12_05/LOG_SHORESIDE_12_7_2011_____08_12_05.alog

%% FILE OPENED ON Tue Jul 12 08:12:05 2011

%% LOGSTART 23588509053.6

%%%

76.758 SIMCOR_RANGE_REQUEST uTimerScript name=archie

78.157 VIEW_RANGE_PULSE uSimContactRange x=-49.31,y=-38.86,radius=50,duration=6,label=archie_ping,...

78.157 SIMCOR_RANGE_REPORT uSimContactRange vname=archie,range=176.6565,target=jackal,time=23588509131.764

142

78.157 VIEW_RANGE_PULSE uSimContactRange x=-187.67,y=-144.6,radius=40,duration=15,label=jackal_reply,...

78.157 SIMCOR_RANGE_REPORT_GT uSimContactRange vname=archie,range=174.1391,target=jackal,time=23588509131.764

104.761 SIMCOR_RANGE_REQUEST uTimerScript name=archie

130.417 SIMCOR_RANGE_REQUEST uTimerScript name=archie

132.118 VIEW_RANGE_PULSE uSimContactRange x=-141.97,y=-94.55,radius=50,duration=6,label=archie_ping,...

132.119 SIMCOR_RANGE_REPORT uSimContactRange vname=archie,range=131.1348,target=jackal,time=23588509185.725

132.119 SIMCOR_RANGE_REPORT_GT uSimContactRange vname=archie,range=130.8741,target=jackal,time=23588509185.725

132.119 VIEW_RANGE_PULSE uSimContactRange x=-191.18,y=-215.82,radius=40,duration=15,label=jackal_reply,...

163.599 SIMCOR_RANGE_REQUEST uTimerScript name=archie

165.819 VIEW_RANGE_PULSE uSimContactRange x=-197.98,y=-128.86,radius=50,duration=6,label=archie_ping,...

165.819 SIMCOR_RANGE_REPORT uSimContactRange vname=archie,range=122.0918,target=jackal,time=23588509219.426

165.819 SIMCOR_RANGE_REPORT_GT uSimContactRange vname=archie,range=127.1016,target=jackal,time=23588509219.426

165.820 VIEW_RANGE_PULSE uSimContactRange x=-161.42,y=-250.59,radius=40,duration=15,label=jackal_reply,...

190.192 SIMCOR_RANGE_REQUEST uTimerScript name=archie

216.311 SIMCOR_RANGE_REQUEST uTimerScript name=archie

217.910 VIEW_RANGE_PULSE uSimContactRange x=-168.48,y=-226,radius=50,duration=6,label=archie_ping,...

217.910 SIMCOR_RANGE_REPORT uSimContactRange vname=archie,range=96.955,target=jackal,time=23588509271.516

217.910 SIMCOR_RANGE_REPORT_GT uSimContactRange vname=archie,range=98.0072,target=jackal,time=23588509271.516

217.910 VIEW_RANGE_PULSE uSimContactRange x=-112.19,y=-306.23,radius=40,duration=15,label=jackal_reply,...

245.493 SIMCOR_RANGE_REQUEST uTimerScript name=archie

273.729 SIMCOR_RANGE_REQUEST uTimerScript name=archie

275.877 VIEW_RANGE_PULSE uSimContactRange x=-125.38,y=-332.68,radius=50,duration=6,label=archie_ping,...

275.877 SIMCOR_RANGE_REPORT uSimContactRange vname=archie,range=88.6767,target=jackal,time=23588509329.484

275.877 SIMCOR_RANGE_REPORT_GT uSimContactRange vname=archie,range=85.9737,target=jackal,time=23588509329.484

275.877 VIEW_RANGE_PULSE uSimContactRange x=-39.7,y=-325.58,radius=40,duration=15,label=jackal_reply,...

In this example, the range requests are made by archie, and range reports are generated by
uSimContactRange, and reported back to archie, but not the other vehicle. A quick look at the log
file for archie reveals this, in Listing 49 below. Each range request is followed by a range report
unless it violates the minimum ping wait time set in the simulator, which in this case is 30 seconds.

$ cd missions/m8_hugo/LOG_ARCHIE_12_7_2011_____08_12_03/

$ aloggrep LOG_ARCHIE_12_7_2011_____08_12_03.alog uSimContactRange uTimerScript

Listing 49 - A subset of the Archie log file in the Hugo example mission.

%%%

%% LOG FILE: ./LOG_ARCHIE_12_7_2011_____08_12_03/LOG_ARCHIE_12_7_2011_____08_12_03.alog

%% FILE OPENED ON Tue Jul 12 08:12:03 2011

%% LOGSTART 23588509017.6

%%%

112.767 SIMCOR_RANGE_REQUEST uTimerScript name=archie

114.166 SIMCOR_RANGE_REPORT uSimContactRange vname=archie,range=176.6565,target=jackal,time=23588509131.764

140.770 SIMCOR_RANGE_REQUEST uTimerScript name=archie

166.426 SIMCOR_RANGE_REQUEST uTimerScript name=archie

168.127 SIMCOR_RANGE_REPORT uSimContactRange vname=archie,range=131.1348,target=jackal,time=23588509185.725

199.608 SIMCOR_RANGE_REQUEST uTimerScript name=archie

201.828 SIMCOR_RANGE_REPORT uSimContactRange vname=archie,range=122.0918,target=jackal,time=23588509219.426

226.201 SIMCOR_RANGE_REQUEST uTimerScript name=archie

252.319 SIMCOR_RANGE_REQUEST uTimerScript name=archie

253.919 SIMCOR_RANGE_REPORT uSimContactRange vname=archie,range=96.955,target=jackal,time=23588509271.516

281.502 SIMCOR_RANGE_REQUEST uTimerScript name=archie

309.738 SIMCOR_RANGE_REQUEST uTimerScript name=archie

311.886 SIMCOR_RANGE_REPORT uSimContactRange vname=archie,range=88.6767,target=jackal,time=23588509329.484

344.566 SIMCOR_RANGE_REQUEST uTimerScript name=archie

143

15 The uSimCurrent Utility: Simulating Water Currents

The uSimCurrent MOOS application is a newcomer in the toolbox and documentation is thin.
Nevertheless it has been tested and used quite a bit and is worth a quick introduction here for
those with a need for some ability to simulate water current on unmanned vehicles.

uSimCurrent is intended to be used with the uSimMarine simulator, by generating force vectors
and publishing them to the MOOSDB. The uSimMarine simulator has a generic interface to accept
externally published force vectors regardless of the source, written to the variables USM FORCE X,
USM FORCE Y, and USM FORCE VECTOR, as described in Section 12. The uSimCurrent application reads
a provided current field file containing an association of water current to positions in the water.
On iteration of uSimCurrent, the vehicle’s current position is noted, looked up in the current-field
data structure, and a new force vector is posted. The idea is shown in Figure 37.

Figure 37: The uSimCurrent Utility: The simulator is initialized with a data file describing currents and locations.
The simulator then repeatedly publishes a current vector based on the present vehicle position.

15.1 Overview of the uSimCurrent Interface and Configuration Options

The uSimCurrent application may be configured with a configuration block within a .moos file,
and from the command line. Its interface is defined by its publications and subscriptions for
MOOS variables consumed and generated by other MOOS applications. An overview of the set of
configuration options and interface is provided in this section.

15.1.1 Configuration Parameters for uSimCurrent

The following configuration parameters are defined for uSimCurrent. A more detailed description
is provided in other parts of this section. Parameters having default values are indicated so in
parentheses.

CURRENT FIELD: Name of a fild describing a current field.
CURRENT FIELD ACTIVE: Boolean indicating whether the simulator is active.

144

15.1.2 MOOS Variables Posted by uSimCurrent

The primary output of uSimCurrent to the MOOSDB is the force vector to be consumed by the
uSimMarine application.

USM FORCE VECTOR: A force vector representing the prevailing current.
USC CFIELD SUMMARY: Summary of configured current field.

VIEW VECTOR: Vector objects suitable for rendering in GUI applications.

15.1.3 MOOS Variables Subscribed for by uSimCurrent

Variables subscribed for by uSimCurrent are summarized below.

NAV X: The ownship vehicle position on the x axis of local coordinates.
NAV Y: The ownship vehicle position on the y axis of local coordinates.

If pNodeReporter is configured to handle a second navigation solution as described in Section 10.2.5,
the corresponding addition variables as described in that section will also be automatically sub-
scribed for.

145

16 The Alog-Toolbox for Analyzing and Editing Mission Log Files

16.1 Brief Overview

The Alog-Toolbox is a set of five post-mission analysis utility applications alogview, alogscan,
alogrm, aloggrep, alogclip. Each application manipulates or renderings .alog files generated by
the pLogger application. Three of the applications, alogclip, aloggrep, and alogrm are command-
line tools for filtering a given .alog file to a reduced size. Reduction of a log file size may facilitate
the time to load a file in a post-processing application, may facilitate its transmission over slow
transmission links when analyzing data between remote users, or may simply ease in the storing and
back-up procedures. The alogscan tool provides statistics on a given .alog file that may indicate
how to best reduce file size by eliminating variable entries not used in post-processing. It also
generates other information that may be handy in debugging a mission. The alogview tool is a
GUI-based tool that accepts one or more .alog files and renders a vehicle positions over time on
an operation area, provides time-correlated plots of any logged numerical MOOS variables, and
renders helm autonomy mode data with plots of generated objective functions.

16.2 An Example .alog File

The .alog file used in the examples below was generated from the Alpha example mission. This
file, alpha.alog, is found in the missions distributed with the MOOS-IvP tree. The Alpha mission
is described in [1]. The alpha.alog file was created by simply running the mission as described,
and can be found in:

moos-ivp/trunk/ivp/missions/alpha/alpha.alog.

16.3 The alogscan Tool

The alogscan tool is a command-line application for providing statistics relating to a given .alog

file. It reports, for each unique MOOS variable in the log file, (a) the number of lines in which
the variable appears, i.e., the number of times the variable was posted by a MOOS application,
(b) the total number of characters comprising the variable value for all entries of a variable, (c)
the timestamp of the first recorded posting of the variable, (d) the timestamp of the last recorded
posting of the variable, (e) the list of MOOS applications the posted the variable.

16.3.1 Command Line Usage for the alogscan Tool

The alogscan tool is run from the command line with a given .alog file and a number of options.
The usage options are listed when the tool is launched with the -h switch:

Listing 50 - Command line usage for the alogscan tool.

0 > alogscan -h

1 Usage:

2 alogscan file.alog [OPTIONS]

3

4 Synopsis:

5 Generate a report on the contents of a given

6 MOOS .alog file.

7

8 Options:

146

9 --sort=type Sort by one of SIX criteria:

10 start: sort by first post of a var

11 stop: sort by last post of a var

12 (Default) vars: sort by variable name

13 proc: sort by process/source name

14 chars: sort by total chars for a var

15 lines: sort by total lines for a var

16

17 --appstat Output application statistics

18 -r,--reverse Reverse the sorting output

19 -n,--nocolors Turn off process/source color coding

20 -h,--help Displays this help message

21 -v,--version Displays the current release version

22

23 See also: aloggrp, alogrm, alogclip, alogview

The order of the arguments passed to alogscan do not matter. The lines of output are sorted
by grouping variables posted by the same MOOS process or source, as in Listing 51 below. The
sorting criteria can instead be done by alphabetical order on the variable name (--sort=vars), the
total characters in the file due to a variable (--sort=chars), the total lines in the file due to a
variable (--sort=lines), the time of the first posting of the variable (--sort=start), or the time
of the last posting of the variable (--sort=stop). The order of the output may be reversed (-r,
--reverse). By default, the entries are color-coded by the variable source, using the few available
terminal colors (there are not many). When unique colors are exhausted, the color reverts back to
the default terminal color in effect at the time.

16.3.2 Example Output from the alogscan Tool

The output shown in Listing 51 was generated from the alpha.alog file generated by the Alpha
example mission.

Listing 51 - Example output from the alogscan tool.

0 Variable Name Lines Chars Start Stop Sources

1 ------------- ----- ----- ------ ------ -------

2 DB_CLIENTS 282 22252 -0.38 566.42 MOOSDB_alpha

3 DB_TIME 556 7132 1.21 566.18 MOOSDB_alpha

4 DB_UPTIME 556 7173 1.21 566.18 MOOSDB_alpha

5 USIMMARINE_STATUS 276 92705 0.39 565.82 uSimMarine

6 NAV_DEPTH 6011 6011 1.43 566.38 uSimMarine

7 NAV_HEADING 6011 75312 1.43 566.38 uSimMarine

8 NAV_LAT 6011 74799 1.43 566.38 uSimMarine

9 NAV_LONG 6011 80377 1.43 566.38 uSimMarine

10 NAV_SPEED 6011 8352 1.43 566.38 uSimMarine

11 NAV_STATE 6011 18033 1.43 566.38 uSimMarine

12 NAV_X 6011 72244 1.43 566.38 uSimMarine

13 NAV_Y 6011 77568 1.43 566.38 uSimMarine

14 NAV_YAW 6011 80273 1.43 566.38 uSimMarine

15 BHV_IPF 2009 564165 46.26 542.85 pHelmIvP

16 CREATE_CPU 2108 2348 46.26 566.33 pHelmIvP

17 CYCLE_INDEX 5 5 44.98 543.09 pHelmIvP

18 DEPLOY 3 14 3.84 543.09 pHelmIvP,pMarineViewer

19 DESIRED_HEADING 2017 5445 3.85 543.09 pHelmIvP

20 DESIRED_SPEED 2017 2017 3.85 543.09 pHelmIvP

21 HELM_IPF_COUNT 2108 2108 46.26 566.32 pHelmIvP

22 HSLINE 1 3 3.84 3.84 pHelmIvP

23 IVPHELM_DOMAIN 1 29 3.84 3.84 pHelmIvP

24 IVPHELM_ENGAGED 462 3342 3.85 566.32 pHelmIvP

147

25 IVPHELM_MODESET 1 0 3.84 3.84 pHelmIvP

26 IVPHELM_POSTINGS 2014 236320 46.26 543.33 pHelmIvP

27 IVPHELM_STATEVARS 1 20 44.98 44.98 pHelmIvP

28 IVPHELM_SUMMARY 2113 612685 44.98 566.33 pHelmIvP

29 LOOP_CPU 2108 2348 46.26 566.33 pHelmIvP

30 PC_hsline 1 9 44.98 44.98 pHelmIvP

31 PC_waypt_return 3 14 44.98 543.33 pHelmIvP

32 PC_waypt_survey 3 14 44.98 543.33 pHelmIvP

33 PHELMIVP_STATUS 255 198957 3.85 565.12 pHelmIvP

34 PLOGGER_CMD 1 17 3.84 3.84 pHelmIvP

35 PWT_BHV_HSLINE 1 1 44.98 44.98 pHelmIvP

36 PWT_BHV_WAYPT_RETURN 3 5 44.98 543.09 pHelmIvP

37 PWT_BHV_WAYPT_SURVEY 2 4 44.98 462.90 pHelmIvP

38 RETURN 4 19 3.84 543.09 pHelmIvP,pMarineViewer

39 STATE_BHV_HSLINE 1 1 44.98 44.98 pHelmIvP

40 STATE_BHV_WAYPT_RETURN 4 4 44.98 543.33 pHelmIvP

41 STATE_BHV_WAYPT_SURVEY 3 3 44.98 463.15 pHelmIvP

42 SURVEY_INDEX 10 10 44.98 429.70 pHelmIvP

43 SURVEY_STATUS 1116 77929 45.97 462.90 pHelmIvP

44 VIEW_POINT 4034 101662 44.98 543.33 pHelmIvP

45 VIEW_SEGLIST 4 273 44.98 543.33 pHelmIvP

46 WPT_INDEX 1 1 463.15 463.15 pHelmIvP

47 WPT_STAT 223 15626 463.15 543.09 pHelmIvP

48 LOGGER_DIRECTORY 56 1792 1.07 559.19 pLogger

49 PLOGGER_STATUS 263 331114 1.07 566.40 pLogger

50 DESIRED_RUDDER 10185 150449 -9.28 545.18 pMarinePID

51 DESIRED_THRUST 10637 20774 -9.28 566.52 pMarinePID

52 MOOS_DEBUG 5 39 -9.31 545.23 pMarinePID,pHelmIvP

53 PMARINEPID_STATUS 279 81990 0.95 566.28 pMarinePID

54 HELM_MAP_CLEAR 1 1 -1.56 -1.56 pMarineViewer

55 MOOS_MANUAL_OVERIDE 1 5 44.65 44.65 pMarineViewer

56 PMARINEVIEWER_STATUS 270 95560 -0.95 564.89 pMarineViewer

57 NODE_REPORT_LOCAL 1159 207535 1.15 565.91 pNodeReporter

58 PNODEREPORTER_STATUS 233 50534 -0.37 563.93 pNodeReporter

59 ---

60 Total variables: 57

61 Start/Stop Time: -9.31 / 566.52

When the -appstat command line option is included, a second report is generated, after the above
report, that provides statistics keyed by application, rather than by variable. For each application
that has posted a variable recorded in the given .alog file, the number of lines and characters are
recorded, as well as the percentage of total lines and characters. An example for the alpha.alog

file is shown in Listing 52.

Listing 52 - Example alogscan output generated with the -appstat command line option.

64 MOOS Application Total Lines Total Chars Lines/Total Chars/Total

65 --------------- ----------- ----------- ----------- -----------

66 MOOSDB_alpha 1394 36557 1.37 1.08

67 uSimMarine 54375 585674 53.57 17.29

68 pHelmIvP 22642 1825437 22.31 53.89

69 pLogger 319 332906 0.31 9.83

70 pMarinePID 21106 253252 20.80 7.48

71 pMarineViewer 279 95599 0.27 2.82

72 pNodeReporter 1392 258069 1.37 7.62

Further Tips

• If a small number of variables are responsible for a relatively large portion of the file size, and
are expendable in terms of how data is being analyzed, the variables may be removed to ease

148

the handling, transmission, or storage of the data. To remove variables from existing files,
the alogrm tool described in 16.6 may be used. To remove the variable from future files, the
pLogger configuration may be edited by either removing the variable from the list of variables
explicitly requested for logging, or if WildCardLogging is used, mask out the variable with
the WildCardOmitPattern parameter setting. See the pLogger documentation.

• The output of alogscan can be further distilled using common tools such as grep. For example,
if one only wants a report on variables published by the pHelmIvP application, one could type:

alogscan alpha.alog | grep pHelmIvP

16.4 The alogclip Tool

The alogclip tool will prune a given .alog file based on a given beginning and end timestamp.
This is particularly useful when a log file contains a sizeable stretch of data logged after mission
completion, such as data being recorded while the vehicle is being recovered or sitting idle topside
after recovery.

16.4.1 Command Line Usage for the alogclip Tool

The alogclip tool is run from the command line with a given .alog file, a start time, end time, and
the name of a new .alog file. By default, if the named output file exists, the user will be prompted
before overwriting it. The user prompt can be bypassed with the -f,--force option. The usage
options are listed when the tool is launched with the -h switch:

Listing 53 - Command line usage for the alogclip tool.
0 > alogclip -h

1 Usage:

2 alogclip in.alog mintime maxtime [out.alog] [OPTIONS]

3

4 Synopsis:

5 Create a new MOOS .alog file from a given .alog file

6 by removing entries outside a given time window.

7

8 Standard Arguments:

9 in.alog - The input logfile.

10 mintime - Log entries with timestamps below mintime

11 will be excluded from the output file.

12 maxtime - Log entries with timestamps above mintime

13 will be excluded from the output file.

14 out.alog - The newly generated output logfile. If no

15 file provided, output goes to stdout.

16

17 Options:

18 -h,--help Display this usage/help message.

19 -v,--version Display version information.

20 -f,--force Overwrite an existing output file

21 -q,--quiet Verbose report suppressed at conclusion.

22

23 Further Notes:

24 (1) The order of arguments may vary. The first alog

25 file is treated as the input file, and the first

26 numerical value is treated as the mintime.

27 (2) Two numerical values, in order, must be given.

28 (3) See also: alogscan, alogrm, aloggrep, alogview

149

16.4.2 Example Output from the alogclip Tool

The output shown in Listing 54 was generated from the alpha.alog file generated by the Alpha
example mission.

Listing 54 - Example alogclip output applied to the alpha.alog file.

1 > alogclip alpha.alog new.alog 50 350

2

3 Processing input file alpha.alog...

4

5 Total lines clipped: 44,988 (44.32 pct)

6 Front lines clipped: 5,474

7 Back lines clipped: 39,514

8 Total chars clipped: 4,200,260 (43.09 pct)

9 Front chars clipped: 432,409

10 Back chars clipped: 3,767,851

16.5 The aloggrep Tool

The aloggrep tool will prune a given .alog file by retaining lines of the original file that contain
log entries for a user-specified list of MOOS variables or MOOS processes (sources). As the name
implies it is motivated by the Unix grep command, but grep will return a matched line regardless of
where the pattern appears in the line. Since MOOS variables also often appear in the string content
of other MOOS variables, grep often returns much more than one is looking for. The aloggrep tool
will only pattern-match on the second column of data (the MOOS variable name), or the third
column of data (the MOOS source), of any given entry in a given .alog file.

16.5.1 Command Line Usage for the aloggrep Tool

Listing 55 - Command line usage for the aloggrep tool.

0 > aloggrep -h

1 Usage:

2 aloggrep in.alog [VAR] [SRC] [out.alog] [OPTIONS]

3

4 Synopsis:

5 Create a new MOOS .alog file by retaining only the

6 given MOOS variables or sources from a given .alog file.

7

8 Standard Arguments:

9 in.alog - The input logfile.

10 out.alog - The newly generated output logfile. If no

11 file provided, output goes to stdout.

12 VAR - The name of a MOOS variable

13 SRC - The name of a MOOS process (source)

14

15 Options:

16 -h,--help Displays this help message

17 -v,--version Displays the current release version

18 -f,--force Force overwrite of existing file

19 -q,--quiet Verbose report suppressed at conclusion

20

21 Further Notes:

22 (1) The second alog is the output file. Otherwise the

23 order of arguments is irrelevent.

150

24 (2) VAR* matches any MOOS variable starting with VAR

25 (3) See also: alogscan, alogrm, alogclip, alogview

Note that, in specifying items to be filtered out, there is no distinction made on the command line
that a given item refers to a entry’s variable name or an entry’s source, i.e., MOOS process name.

16.5.2 Example Output from the aloggrep Tool

The output shown in Listing 56 was generated from the alpha.alog file generated by the Alpha
example mission.

Listing 56 - Example aloggrep output applied to the alpha.alog file.

1 > aloggrep alpha.alog NAV_* new.alog

2

3 Processing on file : alpha.alog

4 Total lines retained: 54099 (53.30%)

5 Total lines excluded: 47396 (46.70%)

6 Total chars retained: 3293774 (33.79%)

7 Total chars excluded: 6453494 (66.21%)

8 Variables retained: (9) NAV_DEPTH, NAV_HEADING, NAV_LAT, NAV_LONG,

9 NAV_SPEED, NAV_STATE, NAV_X, NAV_Y, NAV_YAW

16.6 The alogrm Tool

The alogrm tool will prune a given .alog file by removing lines of the original file that contain log
entries for a user-specified list of MOOS variables or MOOS processes (sources). It may be fairly
viewed as the complement of the aloggrep tool.

16.6.1 Command Line Usage for the alogrm Tool

Listing 57 - Command line usage for the alogrm tool.

0 > alogrm -h

1 Usage:

2 alogrm in.alog [VAR] [SRC] [out.alog] [OPTIONS]

3

4 Synopsis:

5 Remove the entries matching the given MOOS variables or sources

6 from the given .alog file and generate a new .alog file.

7

8 Standard Arguments:

9 in.alog - The input logfile.

10 out.alog - The newly generated output logfile. If no

11 file provided, output goes to stdout.

12 VAR - The name of a MOOS variable

12 SRC - The name of a MOOS process (source)

14

15 Options:

16 -h,--help Displays this help message

17 -v,--version Displays the current release version

18 -f,--force Force overwrite of existing file

19 -q,--quiet Verbose report suppressed at conclusion

20 --nostr Remove lines with string data values

21 --nonum Remove lines with double data values

22 --clean Remove lines that have a timestamp that is

151

23 non-numerical or lines w/ no 4th column

24

25 Further Notes:

26 (1) The second alog is the output file. Otherwise the

27 order of arguments is irrelevent.

28 (2) VAR* matches any MOOS variable starting with VAR

29 (3) See also: alogscan, aloggrep, alogclip, alogview

Note that, in specifying items to be filtered out, there is no distinction made on the command line
that a given item refers to a entry’s variable name or an entry’s source, i.e., MOOS process name.

16.6.2 Example Output from the alogrm Tool

The output shown in Listing 58 was generated from the alpha.alog file generated by the Alpha
example mission.

Listing 58 - Example alogrm output applied to the alpha.alog file.

1 > alogrm alpha.alog NAV_* new.alog

2

3 Processing on file : alpha.alog

4

5 Total lines retained: 47396 (46.70%)

6 Total lines excluded: 54099 (53.30%)

7 Total chars retained: 6453494 (66.21%)

8 Total chars excluded: 3293774 (33.79%)

9 Variables retained: (48) BHV_IPF, CREATE_CPU, CYCLE_INDEX, DB_CLIENTS,

10 DB_TIME, DB_UPTIME, DEPLOY, DESIRED_HEADING, DESIRED_RUDDER, DESIRED_SPEED,

11 DESIRED_THRUST, HELM_IPF_COUNT, HELM_MAP_CLEAR, HSLINE, USIMMARINE_STATUS,

12 IVPHELM_DOMAIN, IVPHELM_ENGAGED, IVPHELM_MODESET, IVPHELM_POSTINGS,

13 IVPHELM_STATEVARS, IVPHELM_SUMMARY, LOGGER_DIRECTORY, LOOP_CPU, MOOS_DEBUG,

14 MOOS_MANUAL_OVERIDE, NODE_REPORT_LOCAL, PC_hsline, PC_waypt_return,

15 PC_waypt_survey, PHELMIVP_STATUS, PLOGGER_CMD, PLOGGER_STATUS,

16 PMARINEPID_STATUS, PMARINEVIEWER_STATUS, PNODEREPORTER_STATUS,

17 PWT_BHV_HSLINE, PWT_BHV_WAYPT_RETURN, PWT_BHV_WAYPT_SURVEY, RETURN,

18 STATE_BHV_HSLINE, STATE_BHV_WAYPT_RETURN, STATE_BHV_WAYPT_SURVEY,

19 SURVEY_INDEX, SURVEY_STATUS, VIEW_POINT, VIEW_SEGLIST, WPT_INDEX, WPT_STAT

152

16.7 The alogview Tool

The alogview application is used for post-mission rendering of one or more alog files. It provides
(a) an indexed view of vehicle position rendered on the operation area, (b) time plots of any logged
numerical data, (c) IvP Helm information for a given point in time, and (d) rendered IvP functions
generated by the helm for a given point in time. A snapshot of the tool is shown in Figure 38.

This tool is very much still under development, and the below documentation is far from com-
plete despite the best intentions after release 4.1. Nevertheless, since there are those who are using
this regularly at this date, some attempt here is made to introduce the tool. This tool was also
known as logview prior to release 4.1 in August 2010. It was renamed to alogview to make it
consistent with other tools in the Alog Toolbox. A significant addition to the tool since Release
4.1 is the support for rendering depth objective functions as shown in the figure.

Figure 38: The alogview tool: used for post-mission rendering of alog files from one or more vehicles and stepping
through time to analyze helm status, IvP objective functions, and other logged numerical data correlated to vehicle
position in the op-area and time.

The view shown to the user at any given time is indexed on a timestamp. The vehicles rendered

153

in the op-area are shown at their positions for that point in time. The helm scope output and
IvP function output are displayed for the helm iteration at the current timestamp. The data plot
output shows a plot for a given variable over all logged time with a red vertical bar that moves left
to right indicating the current time. The alogview tool by default loads the complete alog vehicle
history to allow the user to jump directly to any point in time. The option also exists to load only
a portion of the data based on start and end time provided on the command line.

16.7.1 Command Line Usage for the alogview Tool

The alogview tool is run from the command line with one or more given .alog files and a number
of options. The usage options are listed when the tool is launched with the -h switch:

Listing 59 - Command line usage for the alogview tool.

0 > alogview -h

1 Usage:

2 alogview file.alog [another_file.alog] [OPTIONS]

3

4 Synopsis:

5 Renders vehicle paths from multiple MOOS .alog files.

6 Renders time-series plots for any logged numerical data.

7 Renders IvP Helm mode information vs. vehicle position.

8 Renders IvP Helm behavior objective functions.

9

10 Standard Arguments:

11 file.alog - The input logfile.

12

13 Options:

14 -h,--help Displays this help message

15 -v,--version Displays the current release version

16 --mintime=val Clip data with timestamps < val

17 --maxtime=val Clip data with timestamps > val

18 --nowtime=val Set the initial startup time

19 --geometry=val Viewer window pixel size in HEIGHTxWIDTH

20 or large, medium, small, xsmall

21 Default size is 1400x1100 (large)

22 --layout=val Window layout=normal,noipfs, or fullview

23

24 Further Notes:

25 (1) Multiple .alog files ok - typically one per vehicle

26 (2) Non alog files will be scanned for polygons

27 (3) See also: alogscan, alogrm, alogclip, aloggrep

The order of the arguments passed to alogview do not matter. The --mintime and --maxtime

arguments allow the user to effectively clip the alog files to reduce the amount of data loaded into
RAM by alogview during a session. The --geometry argument allows the user to custom set the
size of the display window. A few shortcuts, "large", "medium", "small", and "xsmall" are allowed.
The --layout argument allows the user to affect the real estate layout by optionally closing one or
more panels to enlarge other panels. This is described in Section 16.7.2.

16.7.2 Description of Panels in the alogview Window

Although the alogview tool will read in any .alog file produced by the pLogger tool, much of the
tool’s screen real estate is dedicated to rendering information produced by the helm. The alogview

tool has six panels of information, as shown in Figure 39. The primary panel is the Op-Area Panel
which renders the vehicle position(s) on the operation area as a function of time, along with track

154

history. The IvPFunction Panels render the objective functions produced by vehicle behaviors for
a given helm iteration. The Helm Scope Panels display helm output and behavior information for
a given helm iteration. The Data Plot panels render two plots of logged numerical data vs the
vehicle log time. Each of these panels and panel controls are discussed in the next few sections.

Figure 39: The panels comprising the alogview tool: Each panel renders information based on the globally held
current timestamp. Certain panels may be collapsed to make more room for other panels.

16.7.3 The Op-Area Panel for Rendering Vehicle Trajectories

The Op-Area panel renders, for a given point in time, the vehicle(s) current position and orienta-
tion, the vehicle(s) trajectory history, and certain geometric objects such as points, polygons, line
segments and their labels, that may have been posted by the helm or other MOOS processes if they
were logged in the alog file(s). An example is shown in Figure 40.

Stepping Through Time - The Playback Pull-down Menu

The primary interaction with the Op-Area panel is to step the vehicle forward and backward
through time either by fixed time increments or by helm iteration. The simplest way to step is
with either the ’[’ and ’]’ keys to step backward and forward by one step, or the ’<’ and ’>’

keys to move by ten steps. (The current time can also be jumped to with a mouse click in the Data
Plot panel. A step unit by default is one second. Alternatively the step unit may be given by one
iteration of the helm. If multiple vehicles (alog files) are open, a helm iteration is defined by the
helm in the “active” vehicle, i.e, the vehicle whose helm scope information is being displayed in the
left-hand Helm Scope panel.

The stepping can be initiated by successive key clicks as noted above or be automatic when
put into playback, i.e., streaming mode. In streaming mode the steps continue automatically at

155

Figure 40: The OpArea panel of the alogview tool: Vehicle position(s) for a given point in time are rendered
along with vehicle trajectory history and certain geometric visual artifacts such as points, polygons and line segments
that may have been posted by the helm or another MOOS process. The image in this figure can be replicated exactly
by launching alogview on the alpha.alog file from the Alpha mission distributed with the MOOS-IvP source code,
launched with the --nowtime=144 command line option.

fixed intervals until paused or until the end of the latest timestamp of all loaded log files. The
time interval between step executions can be sped up or slowed down with the ’a’ or ’z’ keys
respectively. The primary motivation of streaming was to have the option of doing a screen capture
of images on each step saved to a file for later compilation as an animation (typically animated
GIF). Screen capturing can be enabled from the Playback pull-down menu or by hitting the ’w’

key. When enabled, a purple box should be rendered over the Op-Area panel indicating the scope
of the screen capture. By successively hitting the ’w’ key, the capture box is changed between
the following extents: "1024x768", "800x600", "640x480", "480x360", and "off". The capturing
is done by invoking a system call to the import tool distributed with the powerful ImageMagick
Open Source package.

Vehicle and Vehicle History Renderings - The Vehicles Pull-down Menu

The rendering of vehicle size, type and color, vehicle trails and the position of the vehicles may
be altered via the Vehicles pull-down menu options. The vehicle size and shape upon startup is
determined from the NODE REPORT LOCAL variable (See Section 10.1.2). The set of displayable shapes
in alogview is the same as that for the pMarineViewer application and shown in Figure 10 on page
33. The rendering of vehicles in the Op-Area panel may be toggled off and on by hitting the
CTRL-’v’ key, and the size of the vehicles may be altered with the ’-’ and ’+’. The size of the
rendered vehicle initially is drawn to scale based on the length reported in NODE REPORT LOCAL, and
can be returned to scale by hitting the ALT-’v’ key.

156

The rendering of vehicle names may be toggled off and on by hitting the ’n’ key, and the user
may toggle between a few different choices for text color by hitting the ALT-’n’ key. By default the
color of the vehicles is set to be yellow for all inactive vehicles, and red for the one active vehicle
(where active means it is the vehicle whose helm data is shown in the left-hand Helm Scope panel).
A few different choices for active and inactive vehicle colors are provided in the Vehicles pull-down
menu. The selection of the active vehicle can be made explicitly from the HelmPlots pull-down
menu, by cycling through the vehicles by hitting the ’v’ key.

Vehicle trails, i.e., position history, are by default rendered from the present point in time back
to the beginning of logged positions in the alog file. Three other modes are supported and can be
toggled through with the ’t’ key. The other modes are: no trails shown at all, all trails shown
from the start to end log time, and trails with a limited history. In the latter case the trail stays
a fixed length behind the vehicle. This fixed length can be made shorter or longer with the ’(’ or
’)’ keys respectively. The size of each trail point can be made smaller or larger with the ’[’ or
’]’ keys respectively.

Geometric Object Renderings - The GeoAttr Pull-down Menu

Certain geometric objects logged in the alog file may be displayed in the Op-Area panel and their
renderings affected by choices available in the GeoAttr pull-down menu. Each object is posted with
a tag that allows for the object to be effectively erased when an object of the same type and tag is
subsequently posted. The alogview tool, upon startup, reads through the log file(s) and determines
which geometric objects are viewable at any given point in time. Thus the user may see these objects
disappear and reappear as one steps back and forth through time. Current objects supported by
alogview are VIEW POINT, VIEW SEGLIST, VIEW POLYGON, VIEW MARKER, and VIEW RANGE PULSE

16.7.4 The Helm Scope Panels for View Helm State by Iteration

The helm scope panels are used for examining the state of the vehicle helm at the present point in
time. In the Vehicle: box, the name of the vehicle preceded by the helm iteration is shown. In the
Mode: box, the helm’s current mode is given if hierarchical mode declarations are configured for
the helm. In the Decision: box, the helm’s decision for that iteration is shown for each decision
variable. The Active: box, shows the list of behaviors active on the present helm iteration. The
Running: box, shows the list of behaviors running on the present helm iteration. The Idle: box,
shows the list of behaviors idle on the present helm iteration. The Completed: box, shows the list
of behaviors that have been completed as of the present helm iteration.

If there are multiple vehicles (alog files) being viewed, the user can switch the vehicle for each
helm scope panel via the HelmPlots pull-down menu.

16.7.5 The Data Plot Panel for Logged Data over Time

The data plot panels at the bottom of the window allow the user to plot any two logged MOOS
variables, if they were logged as numerical data. A red bar in the time plot indicates the current
point in time so the user can visually correlate the vehicles’ position in the op area relative to the
data plot. The user can also click anywhere on the time plot to alter the current point in time
used in all panels. The user may also zoom in on the data plot for better resolution. One note of

157

caution - the scales used by the two variables are likely not the same. The range from low to high
for the particular variable. The range of values is shown on the far left and far right.

16.7.6 Automatic Replay of the Log file(s)

The user can allow the alogview tool to step through time automatically, effectively replaying the
mission over its duration. Replaying can be adjusted in the Replay pull-down menu. The ’=’ key
toggles replaying, and the ’a’ and ’z’ keys can be used to slow down or speed up the replay rate.
This feature is useful when used with other software that allows automatic generation of video
capture real-time from the display. QuickTime in OS X for example.

158

A Use of Logic Expressions

Logic conditions are employed in both the pHelmIvP and uTimerScript applications, to condition
certain activities based on the prescribed logic state of elements of the MOOSDB. The use of
logic conditions in the helm is done in behavior file (.bhv file). For the uTimerScript application,
logic conditions are used in the configuration block of the mission file (.moos file). The MOOS
application using logic conditions maintains a local buffer representing a snapshot of the MOOSDB
for variables involved in the logic expressions. The key relationships and steps are shown in Figure
41:

Figure 41: Logic conditions in a MOOS application: Step 1: the applications registers to the MOOSDB for
any MOOS variables involved in the logic expressions. Step 2: The MOOS application reads incoming mail from the
MOOSDB. Step 3: Any new mail results in an update to the information buffer. Step 4: Within the applications
Iterate() method, the logic expressions are evaluated based on the contents of the information buffer.

The logic conditions are configured as follows:

CONDITION = <logic-expression>

The keyword CONDITION and is case insensitive. When multiple conditions are specified, it is implied
that the overall criteria for “meeting conditions” is the conjunction of all such conditions. In what
remains below, the allowable syntax for <logic-expression> is described.

Simple Relational Expressions

Each logic expression is comprised of either Boolean operators (and, or, not) or relation operators
(≤, <,≥, >, =, ! =). All expressions have at least one relational expression, where the left-hand
side of the expression is treated as a variable, and the right-hand side is a literal (either a string or
numerical value). The literals are treated as a string value if quoted, or if the value is non-numerical.
Some examples:

DEPLOY = true // Example 1

QUALITY >= 75 // Example 2

Variable names are case sensitive since MOOS variables in general are case sensitive. In matching
string values of MOOS variables in Boolean conditions, the matching is case insensitive. If for
example, in Example 1 above, the MOOS variable DEPLOY had the value "TRUE", this would satisfy
the condition. But if the MOOS variable deploy had the value "true", this would not satisfy
Example 1.

159

Simple Logical Expressions with Two MOOS Variables

A relational expression generally involves a variable and a literal, and the form is simplified by
insisting the variable is on the left and the literal on the right. A relational expression can also
involve the comparison of two variables by surrounding the right-hand side with $(). For example:

REQUESTED_STATE != $(RUN_STATE) // Example 3

The variable types need to match or the expression will evaluate to false regardless of the relation.
The expression in Example 3 will evaluate to false if, for example, REQUESTED STATE="run" and
RUN STATE=7, simply because they are of different type, and regardless of the relation being the
inequality relation.

Complex Logic Expressions

Individual relational expressions can be combined with Boolean connectors into more complex
expressions. Each component of a Boolean expression must be surrounded by a pair of parentheses.
Some examples:

(DEPLOY = true) or (QUALITY >= 75) // Example 4

(MSG != error) and !((K <= 10) or (w != 0)) // Example 5

A relational expression such as (w != 0) above is false if the variable w is undefined. In MOOS,
this occurs if variable has yet to be published with a value by any MOOS client connected to the
MOOSDB. A relational expression is also false if the variable in the expression is the wrong type,
compared to the literal. For example (w != 0) in Example 5 would evaluate to false even if the
variable w had the string value "alpha" which is clearly not equal to zero.

160

B Colors

Below are the colors used by IvP utilities that use colors. Colors are case insensitive. A color may
be specified by the string as shown, or with the ’ ’ character as a separator. Or the color may be
specified with its hexadecimal or floating point form. For example the following are equivalent:
“darkblue”, “DarkBlue”, “dark blue”, “hex:00,00,8b”, and “0,0,0.545”. In the latter two styles,
the ’%’, ’$’, or ’#’ characters may also be used as a delimiter instead of the comma if it helps when
embedding the color specification in a larger string that uses its own delimeters. Mixed delimeters
are not supported however.

antiquewhite, (fa,eb,d7)
aqua (00,ff,ff)
aquamarine (7f,ff,d4)
azure (f0,ff,ff)
beige (f5,f5,dc)
bisque (ff,e4,c4)
black (00,00,00)
blanchedalmond(ff,eb,cd)
blue (00,00,ff)
blueviolet (8a,2b,e2)
brown (a5,2a,2a)
burlywood (de,b8,87)
cadetblue (5f,9e,a0)
chartreuse (7f,ff,00)
chocolate (d2,69,1e)
coral (ff,7f,50)
cornsilk (ff,f8,dc)
cornflowerblue(64,95,ed)
crimson (de,14,3c)
cyan (00,ff,ff)
darkblue (00,00,8b)
darkcyan (00,8b,8b)
darkgoldenrod (b8,86,0b)
darkgray (a9,a9,a9)
darkgreen (00,64,00)
darkkhaki (bd,b7,6b)
darkmagenta (8b,00,8b)
darkolivegreen(55,6b,2f)
darkorange (ff,8c,00)
darkorchid (99,32,cc)
darkred (8b,00,00)
darksalmon (e9,96,7a)
darkseagreen (8f,bc,8f)
darkslateblue (48,3d,8b)

darkslategray (2f,4f,4f)
darkturquoise (00,ce,d1)
darkviolet (94,00,d3)
deeppink (ff,14,93)
deepskyblue (00,bf,ff)
dimgray (69,69,69)
dodgerblue (1e,90,ff)
firenrick (b2,22,22)
floralwhite (ff,fa,f0)
forestgreen (22,8b,22)
fuchsia (ff,00,ff)
gainsboro (dc,dc,dc)
ghostwhite (f8,f8,ff)
gold (ff,d7,00)
goldenrod (da,a5,20)
gray (80,80,80)
green (00,80,00)
greenyellow (ad,ff,2f)
honeydew (f0,ff,f0)
hotpink (ff,69,b4)
indianred (cd,5c,5c)
indigo (4b,00,82)
ivory (ff,ff,f0)
khaki (f0,e6,8c)
lavender (e6,e6,fa)
lavenderblush (ff,f0,f5)
lawngreen (7c,fc,00)
lemonchiffon (ff,fa,cd)
lightblue (ad,d8,e6)
lightcoral (f0,80,80)
lightcyan (e0,ff,ff)
lightgoldenrod(fa,fa,d2)
lightgray (d3,d3,d3)
lightgreen (90,ee,90)

161

lightpink (ff,b6,c1)
lightsalmon (ff,a0,7a)
lightseagreen (20,b2,aa)
lightskyblue (87,ce,fa)
lightslategray(77,88,99)
lightsteelblue(b0,c4,de)
lightyellow (ff,ff,e0)
lime (00,ff,00)
limegreen (32,cd,32)
linen (fa,f0,e6)
magenta (ff,00,ff)
maroon (80,00,00)
mediumblue (00,00,cd)
mediumorchid (ba,55,d3)
mediumseagreen(3c,b3,71)
mediumslateblue(7b,68,ee)
mediumspringgreen(00,fa,9a)
mediumturquoise(48,d1,cc)
mediumvioletred(c7,15,85)
midnightblue (19,19,70)
mintcream (f5,ff,fa)
mistyrose (ff,e4,e1)
moccasin (ff,e4,b5)
navajowhite (ff,de,ad)
navy (00,00,80)
oldlace (fd,f5,e6)
olive (80,80,00)
olivedrab (6b,8e,23)
orange (ff,a5,00)
orangered (ff,45,00)
orchid (da,70,d6)
palegreen (98,fb,98)
paleturquoise (af,ee,ee)
palevioletred (db,70,93)
papayawhip (ff,ef,d5)
peachpuff (ff,da,b9)
pelegoldenrod (ee,e8,aa)
peru (cd,85,3f)
pink (ff,c0,cb)
plum (dd,a0,dd)
powderblue (b0,e0,e6)
purple (80,00,80)
red (ff,00,00)
rosybrown (bc,8f,8f)
royalblue (41,69,e1)

saddlebrowm (8b,45,13)
salmon (fa,80,72)
sandybrown (f4,a4,60)
seagreen (2e,8b,57)
seashell (ff,f5,ee)
sienna (a0,52,2d)
silver (c0,c0,c0)
skyblue (87,ce,eb)
slateblue (6a,5a,cd)
slategray (70,80,90)
snow (ff,fa,fa)
springgreen (00,ff,7f)
steelblue (46,82,b4)
tan (d2,b4,8c)
teal (00,80,80)
thistle (d8,bf,d8)
tomatao (ff,63,47)
turquoise (40,e0,d0)
violet (ee,82,ee)
wheat (f5,de,b3)
white (ff,ff,ff)
whitesmoke (f5,f5,f5)
yellow (ff,ff,00)
yellowgreen (9a,cd,32)

162

References

[1] Michael R. Benjamin, Paul M. Newman, Henrik Schmidt, and John J. Leonard. An Overview
of MOOS-IvP and a Brief Users Guide to the IvP Helm Autonomy Software. Technical Report
MIT-CSAIL-TR-2009-028, MIT Computer Science and Artificial Intelligence Lab, June 2009.

[2] Michael R. Benjamin, Paul M. Newman, Henrik Schmidt, and John J. Leonard. An Overview
of MOOS-IvP and a Users Guide to the IvP Helm Autonomy Software. Technical Report MIT-
CSAIL-TR-2010-041, MIT Computer Science and Artificial Intelligence Lab, August 2010.

[3] Mary M. Hunt, William M. Marquet, Donald A. Moller, Kenneth R. Peal, Woollcott K. Smith,
and Rober C. Spindel. An Acoustic Navigation System. Technical Report WHOI-74-6, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts, December 1974.

[4] P. A. Milne. Underwater Acoustic Positioning Systems. Gulf Publishing Co., Houston TX,
January 1983.

[5] Roger P. Sokey and Thomas C. Austin. Sequential Long-Baseline Navigation for REMUS,
an Autonomous Underwater Vehicle. Proceedings of SPIE, the Internation Society for Optical
Engineering, 3711:212–219a, 1999.

[6] Louis L. Whitcomb, Dana R. Yoerger, and Hanumant Singh. Combined Doppler/LBL Based
Navigation of Underwater Vehicles. In 11th International Symposium on Unmanned Untethered
Submersible Technology (UUST99), Durham, New Hampshire, August 1999.

163

Index

alogclip, 149
Command Line Usage, 149

aloggrep, 150
Command Line Usage, 150

alogrm, 151
Command Line Usage, 151

alogscan, 146
Command Line Usage, 146

alogview, 153
Command Line Usage, 154
Vehicle Trajectories, 155

Behavior-Posts, 18
Buoyancy, 111

Command and Control
pMarineViewer, 37
uPokeDB, 68
uTermCommand, 57

Command Line Usage
alogclip, 149
aloggrep, 150
alogrm, 151
alogscan, 146
alogview, 154
pBasicContactMgr, 97
pNodeReporter, 87
uPokeDB, 68
uSimBeaconRange, 120
uSimContactRange, 134
uSimMarine, 105
uTimerScript, 72
uXMS, 51

Conditions, 159
Configuration Parameters

pBasicContactMgr, 96, 97
pEchoVar, 62, 63
pMarineViewer, 38
pNodeReporter, 86, 87, 93
uHelmScope, 21
uPokeDB, 68
uProcessWatch, 66

uSimBeaconRange, 118, 120
uSimContactRange, 133, 134
uSimCurrent, 144
uSimMarine, 103, 105
uTermCommand, 57
uTimerScript, 71, 72
uXMS, 49, 51

Contact Management, 95

Depth Simulation, 111

GPS, 81

IvP Behavior Parameters
updates, 17

IvP Behaviors
Dynamic Configuration, 17

Logic Expressions, 159

MOOS
Acronym, 10
Background, 9
Documentation, 12
Operating Systems, 11
Source Code, 10
Sponsors, 10

Mouse
Mouse Poke Configuration, 31
Mouse Pokes in pMarineViewer, 30

pBasicContactMgr, 95
Command Line Usage, 97
Configuration Parameters, 96–100
ALERT CPA RANGE, 99
ALERT CPA TIME, 99
ALERT, 98
CONTACT MAX AGE, 100

Publications, 96
Subscriptions, 96

pEchoVar, 62
Configuration Parameters, 62–64
CONDITION, 64

164

ECHO, 63
FLIP, 63
HOLD MESSAGES, 65

Configuring Echo Event Mappings, 63
Publications, 62
Subscriptions, 62
Variable Flipping, 63

pMarineViewer, 23
Actions, 29
Command and Control, 37
Configuration Parameters, 38
Drop Points, 35
Geometric Objects, 36
GUI Buttons, 37
Markers, 34
Poking the MOOSDB, 29, 37
Pull-Down Menu (Action), 29
Pull-Down Menu (BackView), 25
Pull-Down Menu (GeoAttributes), 27
Pull-Down Menu (MouseContext), 30
Pull-Down Menu (ReferencePoint), 32
Pull-Down Menu (Scope), 29
Pull-Down Menu (Vehicles), 28
Vehicle Shapes, 33

pNodeReporter, 85, 93
Command Line Usage, 87
Configuration Parameters, 86, 87, 93
Publications, 86
Subscriptions, 86

Publications
pBasicContactMgr, 96
pEchoVar, 62
pNodeReporter, 86
uSimBeaconRange, 119
uSimContactRange, 134
uSimCurrent, 145
uSimMarine, 104
uTimerScript, 72

Publications and Subscriptions
uHelmScope, 22
uPokeDB, 70
uProcessWatch, 67
uTermCommand, 61
uXMS, 56

Source Code
Building, 10
Obtaining, 10

Start Delay
uTimerScript, 79

Subscriptions
pBasicContactMgr, 96
pEchoVar, 62
pNodeReporter, 86
uSimBeaconRange, 119
uSimContactRange, 134
uSimCurrent, 145
uSimMarine, 105
uTimerScript, 72

Thrust Map, 114
Time Warp

uTimerScript, 79

uHelmScope, 16
Configuration Parameters, 21
Console output, 16
Publications and Subscriptions, 22
Scoping the MOOSDB, 18
Stepping through time, 19
User Input, 19

uPokeDB, 68
Command Line Usage, 68
Publications and Subscriptions, 70

uProcessWatch, 66
Configuration Parameters, 66
Publications and Subscriptions, 67

uSimBeaconRange, 117
Command Line Usage, 120
Configuration Parameters, 118, 120
BEACON, 118
DEFAULT BEACON COLOR, 118
DEFAULT BEACON FREQ, 118
DEFAULT BEACON REPORT RANGE, 118
DEFAULT BEACON SHAPE, 118
DEFAULT BEACON WIDTH, 118
GROUND TRUTH, 118
PING PAYMENTS, 118
PING WAIT, 118
REACH DISTANCE, 118
REPORT VARS, 118

165

RN ALGORITHM, 118
VERBOSE, 118

Publications, 119
Subscriptions, 119

uSimContactRange, 132
Command Line Usage, 134
Configuration Parameters, 133, 134
PING COLOR, 133
PING WAIT, 133
REACH DISTANCE, 133
REPLY COLOR, 133
REPLY DISTANCE, 133
REPORT VARS, 133
RN ALGORITHM, 133
VERBOSE, 133

Publications, 134
Subscriptions, 134

uSimCurrent, 144
Configuration Parameters, 144
Publications, 145
Subscriptions, 145

uSimMarine, 83, 103
USM FORCE VECTOR ADD, 83
USM FORCE VECTOR, 83
Command Line Usage, 105
Configuration Parameters, 103, 105
Depth Simulation, 111
Initial Vehicle Position and Pose, 106
Propagating Vehicle Position and Pose,

107
Publications, 104
Resetting, 107
Subscriptions, 105
Thrust Map, 114

uTermCommand, 57
Command and Control, 57
Configuration Parameters, 57
Publications and Subscriptions, 61

uTimerScript, 71, 130, 141
Arithmetic Expressions, 78
Atomic Scripts, 76
Command Line Usage, 72
Conditional Pausing, 76
Configuration Parameters, 71, 72, 74–80
CONDITION, 76, 82

DELAY RESET, 84
DELAY RESTART, 82
EVENT, 74, 82, 84
FORWARD VAR, 77
PAUSED, 76
PAUSE VAR, 76
RAND VAR, 78, 84
RESET MAX, 75, 82, 84
RESET TIME, 75, 82, 84
RESET VAR, 75
SCRIPT ATOMIC, 76
SCRIPT NAME, 80, 82, 84
SHUFFLE, 75
START DELAY, 79
STATUS VAR, 80
TIME WARP, 79, 84
UPON AWAKE, 75, 82

Configuring the Event List, 74
Fast Forwarding in Time, 77
Jumping To the Next Event, 77
Logic Conditions, 76
Macros, 77, 82, 84
Macros Built-In, 77
Pausing the Script, 76
Pausing the Script with Conditions, 76
Publications, 72
Resetting, 75, 82, 84
Script Flow Control, 76, 77
Simulated GPS Unit, 81
Simulated Random Wind Gusts, 83
Simulated Range Requests, 130, 141
Start Delay, 79, 82, 84
Subscriptions, 72
Time Warp, 79

uXMS, 18, 46
Command Line Usage, 51
Configuration Parameters, 49, 51
Console Interaction, 53
Publications and Subscriptions, 56

Virgin Variables, 18

Wind, 83

166

Index of MOOS Variables

CONTACTS ALERTED, 96, 100
CONTACTS LIST, 96, 100
CONTACTS RECAP, 96, 100
CONTACTS RETIRED, 96, 100
CONTACTS UNALERTED, 96, 100
CONTACT MGR WARNING, 96
CONTACT RESOLVED, 96
DB CLIENTS, 53, 66, 67
DB UPTIME, 54
DESIRED ELEVATOR, 105, 111
DESIRED HEADING, 49
DESIRED RUDDER, 105, 108
DESIRED THRUST, 105
GPS UPDATE RECEIVED, 82
IVPHELM DOMAIN, 20, 22
IVPHELM ENGAGED, 20, 22, 86
IVPHELM LIFE EVENT, 20
IVPHELM MODESET, 20, 22
IVPHELM POSTINGS, 20, 22
IVPHELM STATEVARS, 20, 22
IVPHELM SUMMARY, 20, 22, 86
MVIEWER LCLICK, 30, 37
MVIEWER RCLICK, 30, 37
NAV DEPTH, 83, 86, 97
NAV HEADING, 83, 86, 96
NAV LAT, 86
NAV LONG, 86
NAV SPEED, 83, 86, 97
NAV X, 83, 86, 96, 145
NAV YAW, 86
NAV Y, 83, 86, 96, 145
NODE REPORT LOCAL, 86, 88, 119, 134
NODE REPORT, 86, 96, 119, 134
PEV ITER, 62
PLATFORM REPORT LOCAL, 86
PLATFORM REPORT, 86
PROC WATCH EVENT, 53, 66, 67
PROC WATCH SUMMARY, 53, 66, 67
SBR RANGE REPORT, 119
SBR RANGE REQUEST, 119
SIMCOR RANGE REPORT, 134

SIMCOR RANGE REQUEST, 134
USM ACTIVE CFIELD, 105
USM BUOYANCY RATE, 105
USM CURRENT FIELD, 105
USM DEPTH, 104
USM FORCE THETA, 105
USM FORCE VECTOR ADD, 83, 105
USM FORCE VECTOR MULT, 105
USM FORCE VECTOR, 83, 105, 145
USM FORCE X, 105
USM FORCE Y, 105
USM FSUMMARY, 104
USM HEADING OVER GROUND, 104
USM HEADING, 104
USM LAT, 104
USM LONG, 104
USM RESET, 105, 107
USM SIM PAUSED, 105
USM SPEED OVER GROUND, 104
USM SPEED, 104
USM X, 104
USM YAW, 104
USM Y, 104
UTS FORWARD, 71, 72, 77
UTS NEXT, 72
UTS PAUSE, 71, 72, 76
UTS RESET, 71, 72, 75
UTS STATUS, 71, 72, 79, 80
VIEW MARKER, 119, 134
VIEW RANGE PULSE, 119, 134
VIEW VECTOR, 145

167

